Optimal Control of a Deterministic Multiclass Queuing System Simultaneously Serving Several Queues

Erjen Lefeber, Stefan Lämmer

November 14, 2011
Acknowledgment

This work is supported by the Netherlands Organization for Scientific Research (NWO-VIDI grant 639.072.072).

Paper

E. Lefeber, S. Lämmer, J.E. Rooda, Optimal control of a deterministic multiclass queuing system by serving several queues simultaneously, Systems and Control Letters 60(7), 524-529, 2011.
Introduction

MCQS simultaneously serving several queues

- Intersection
- Multiclass tandem queue without buffers, e.g. hot ingots
- Polling system with physical constraints, e.g. (un)loading container vessels

/department of mechanical engineering
Systems can be modeled as single server with modes:

mode \{1, 3\}: serve class 1 and class 3 simultaneously,
mode \{1, 4\}: serve class 1 and class 4 simultaneously,
mode \{2, 4\}: serve class 2 and class 4 simultaneously,

and the additional modes

mode \{1\}: serve only class 1,
mode \{2\}: serve only class 2,
mode \{3\}: serve only class 3,
mode \{4\}: serve only class 4,
mode \emptyset: idle,
Introduction

Assumptions

- Deterministic fluid model
- No setup times
- Unit service rate, i.e. $\mu_i = 1$ (w.l.o.g.).
- No arrivals, i.e. $\lambda_i = 0$.
Introduction

Assumptions

▶ Deterministic fluid model
▶ No setup times
▶ Unit service rate, i.e. $\mu_i = 1$ (w.l.o.g.).
▶ No arrivals, i.e. $\lambda_i = 0$.

Objective

$$\min \int_{0}^{\infty} 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) \, dt$$

where $x_i(t)$ denotes the length of queue i at time t.

/department of mechanical engineering
Assume that the system initially starts at \((x_1, x_2, x_3, x_4) = (6, 6, 6, 6)\).
Assume that the system initially starts at \((x_1, x_2, x_3, x_4) = (6, 6, 6, 6)\).

\[
\min \int_0^\infty 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) \, dt
\]

<table>
<thead>
<tr>
<th>Mode</th>
<th>Rate of cost decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode {1, 4}</td>
<td>9</td>
</tr>
<tr>
<td>mode {2, 4}</td>
<td>8</td>
</tr>
<tr>
<td>mode {1, 3}</td>
<td>6</td>
</tr>
<tr>
<td>mode {4}</td>
<td>5</td>
</tr>
<tr>
<td>mode {1}</td>
<td>4</td>
</tr>
<tr>
<td>mode {2}</td>
<td>3</td>
</tr>
<tr>
<td>mode {3}</td>
<td>2</td>
</tr>
<tr>
<td>mode \emptyset</td>
<td>0</td>
</tr>
</tbody>
</table>
Introduction

\[
\min \int_0^\infty 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) \, dt
\]

Assume that the system initially starts at \((x_1, x_2, x_3, x_4) = (6, 6, 6, 6)\).

<table>
<thead>
<tr>
<th>Mode</th>
<th>Rate of cost decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode {1, 4}</td>
<td>9</td>
</tr>
<tr>
<td>mode {2, 4}</td>
<td>8</td>
</tr>
<tr>
<td>mode {1, 3}</td>
<td>6</td>
</tr>
<tr>
<td>mode {4}</td>
<td>5</td>
</tr>
<tr>
<td>mode {1}</td>
<td>4</td>
</tr>
<tr>
<td>mode {2}</td>
<td>3</td>
</tr>
<tr>
<td>mode {3}</td>
<td>2</td>
</tr>
<tr>
<td>mode \∅</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\mu c\)-rule Total costs: 504.

- mode \{1, 4\} for 6
- mode \{2\} for 6
- mode \{3\} for 6
Introduction

\[
\min \int_0^\infty 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) \, dt
\]

Assume that the system initially starts at \((x_1, x_2, x_3, x_4) = (6, 6, 6, 6)\).

<table>
<thead>
<tr>
<th>Mode</th>
<th>Rate of cost decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode {1, 4}</td>
<td>9</td>
</tr>
<tr>
<td>mode {2, 4}</td>
<td>8</td>
</tr>
<tr>
<td>mode {1, 3}</td>
<td>6</td>
</tr>
<tr>
<td>mode {4}</td>
<td>5</td>
</tr>
<tr>
<td>mode {1}</td>
<td>4</td>
</tr>
<tr>
<td>mode {2}</td>
<td>3</td>
</tr>
<tr>
<td>mode {3}</td>
<td>2</td>
</tr>
<tr>
<td>mode {}</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\mu c\)-rule Total costs: 504.

Min. time Total costs: 468.

- mode \{2, 4\} for 6
- mode \{1, 3\} for 6
Assume that the system initially starts at \((x_1, x_2, x_3, x_4) = (6, 6, 6, 6)\).

\[
\min \int_0^\infty 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) \, dt
\]

<table>
<thead>
<tr>
<th>Mode</th>
<th>Rate of cost decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode {1, 4}</td>
<td>9</td>
</tr>
<tr>
<td>mode {2, 4}</td>
<td>8</td>
</tr>
<tr>
<td>mode {1, 3}</td>
<td>6</td>
</tr>
<tr>
<td>mode {4}</td>
<td>5</td>
</tr>
<tr>
<td>mode {1}</td>
<td>4</td>
</tr>
<tr>
<td>mode {2}</td>
<td>3</td>
</tr>
<tr>
<td>mode {3}</td>
<td>2</td>
</tr>
<tr>
<td>mode \emptyset</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\mu \sigma\)-rule \quad \text{Total costs: 504.}

Min. time \quad \text{Total costs: 468.}

Optimal \quad \text{Total costs: 456.}
Problem

- $S = (\mathcal{N}, \mathcal{C})$ undirected graph which models classes that cannot be served simultaneously
- Vertices $\mathcal{N} = \{1, 2, \ldots, N\}$: classes
- Edges $\mathcal{C} \subset \mathcal{N} \times \mathcal{N}$: conflicting classes.

For the example:

$\mathcal{N} = \{1, 2, 3, 4\}$ and $\mathcal{C} = \{(1, 2), (2, 3), (3, 4)\}$
Problem

- $S = (\mathcal{N}, \mathcal{C})$ undirected graph which models classes that cannot be served simultaneously
- Vertices $\mathcal{N} = \{1, 2, \ldots, N\}$: classes
- Edges $\mathcal{C} \subset \mathcal{N} \times \mathcal{N}$: conflicting classes.

For the example:

$$\mathcal{N} = \{1, 2, 3, 4\} \text{ and } \mathcal{C} = \{(1, 2), (2, 3), (3, 4)\}$$

- A set $m \subset \mathcal{N}$ is an **allowed mode** when $m \times m \cap \mathcal{C} = \emptyset$.
- \mathcal{M}_S set of all allowed modes for system S.

/department of mechanical engineering

TU/e

Technische Universität Eindhoven
University of Technology
Problem

Dynamics:

\[
\dot{x}(t) = -B_m u(t) \quad m \in \mathcal{M}_S, \quad (1)
\]

where \(B_m = \begin{bmatrix}
\mathbb{I}_m(1) & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \mathbb{I}_m(N)
\end{bmatrix} \)

Constraints:

\[
x_i(t) \geq 0 \quad 0 \leq u_i(t) \leq \mu_i \quad \forall i \in \mathcal{N}, \quad \forall t \geq 0. \quad (2)
\]
Problem

Dynamics:
\[\dot{x}(t) = -B_m u(t) \quad m \in \mathcal{M}_S, \quad (1) \]
where \(B_m = \begin{bmatrix} \mathbb{I}_m(1) & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mathbb{I}_m(N) \end{bmatrix} \]

Constraints:
\[x_i(t) \geq 0 \quad 0 \leq u_i(t) \leq \mu_i \quad \forall i \in \mathcal{N}, \quad \forall t \geq 0. \quad (2) \]

Problem: Find feedback \(u(x), m(x) \) for (1) guaranteeing (2), minimizing
\[J(x_0) = \int_0^\infty c^T x(s; u, m, x_0) \, ds. \]
Some basic lemmas

Lemma (max rate)

For optimal policy: rate of service of class $i \in \mathcal{N}$ is given by $u_i(x) = \mu_i$.

Lemma \((\mu_{c_i})\)

For an optimal policy: $\sum_{i \in m} \mu_{c_i} u_i(x)$ is nonincreasing for two consecutive modes m_{k-1} and m_k.

Lemma

Switching infinitely fast between several modes can be ignored w.l.o.g.
Some basic lemmas

Lemma (max rate)

For optimal policy: rate of service of class $i \in \mathcal{N}$ is given by $u_i(x) = \mu_i$.

Lemma (μc)

For an optimal policy: $\sum_{i \in m_k} \mu_i c_i$ is nonincreasing for two consecutive modes m_k.
Some basic lemmas

Lemma (max rate)
For optimal policy: rate of service of class $i \in \mathcal{N}$ is given by $u_i(x) = \mu_i$.

Lemma (μc)
For an optimal policy: $\sum_{i \in m_k} \mu_i c_i$ is nonincreasing for two consecutive modes m_k.

Lemma
Switching infinitely fast between several modes can be ignored w.l.o.g.
Optimization problem

Let \(\tau = \begin{bmatrix} \tau_{14} & \tau_{24} & \tau_{13} & \tau_4 & \tau_1 & \tau_2 & \tau_3 \end{bmatrix}^T \) denote the durations of the successive modes.
Optimization problem

Let \(\tau = [\tau_{14} \; \tau_{24} \; \tau_{13} \; \tau_4 \; \tau_1 \; \tau_2 \; \tau_3]^T \) denote the durations of the successive modes.

Given \(\tau \) we can determine the resulting costs, e.g.

\[
\int_0^\infty x_1(s) \, ds = \frac{1}{2} x_{10}^2 + (x_{10} - \tau_{14}) \tau_{24} + (x_{10} - \tau_{14} - \tau_{13}) \tau_4
\]
Optimization problem

Let \(\tau = [\tau_{14} \ \tau_{24} \ \tau_{13} \ \tau_4 \ \tau_1 \ \tau_2 \ \tau_3]^T \) denote the durations of the successive modes.

Given \(\tau \) we can determine the resulting costs, e.g.

\[
\int_0^\infty x_1(s) \, ds = \frac{1}{2} x_{10}^2 + (x_{10} - \tau_{14}) \tau_{24} + (x_{10} - \tau_{14} - \tau_{13}) \tau_4
\]

In addition we have constraints like

\[
x_{10} = \tau_{14} + \tau_{13} + \tau_1 \quad \text{and} \quad \tau_i \geq 0
\]
Optimization problem

The problem can be written as an mpQP:

$$\begin{align*}
\min_\tau & \frac{1}{2} \tau^T H \tau - x_0^T F \tau + \frac{1}{2} x_0^T Y x_0 \\
\text{subject to} & \quad G \tau \leq x_0
\end{align*}$$

which can be solved for an arbitrary parameter x_0.

Note that solving for τ_{14}, τ_{24}, and τ_{13} suffices.
Solution (1)

\[
\begin{bmatrix}
\tau_{14} \\
\tau_{24} \\
\tau_{13}
\end{bmatrix} = \begin{cases}
\begin{bmatrix}
\frac{1}{2} & -\frac{1}{3} & -\frac{1}{3} & \frac{1}{2} \\
\frac{1}{2} & 1 & \frac{1}{3} & \frac{1}{2} \\
\frac{1}{2} & 1 & \frac{1}{3} & \frac{1}{2}
\end{bmatrix} x_0 & \text{for } \begin{bmatrix}
-3 & 2 & 2 & -3 \\
3 & -2 & -2 & -3 \\
-3 & -2 & -2 & 3 \\
-3 & 4 & 2 & 3
\end{bmatrix} x_0 \leq 0 \\
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix} x_0 & \text{for } \begin{bmatrix}
0 & -1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
3 & -2 & -2 & 3
\end{bmatrix} x_0 \leq 0 \\
\begin{bmatrix}
-1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix} x_0 & \text{for } \begin{bmatrix}
1 & 0 & -1 & -1 \\
-3 & 2 & 2 & -3 \\
1 & 0 & -1 & 0 \\
3 & -2 & -2 & 3
\end{bmatrix} x_0 \leq 0
\end{cases}
\]
Solution (2)

\[
\begin{bmatrix}
\tau_{14} \\
\tau_{24} \\
\tau_{13}
\end{bmatrix}
= \begin{cases}
\vdots \\
\begin{bmatrix}
0 & -1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0
\end{bmatrix} x_0 & \text{for}\
\begin{bmatrix}
0 & 1 & 0 & -1 \\
-1 & -1 & 0 & 1 \\
3 & 4 & 2 & 3
\end{bmatrix} x_0 \leq 0 \\
\begin{bmatrix}
1 & 0 & -1 & 0 \\
-1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix} x_0 & \text{for}\
\begin{bmatrix}
-1 & 0 & 1 & 0 \\
1 & 0 & -1 & -1 \\
-3 & -2 & 4 & 3
\end{bmatrix} x_0 \leq 0 \\
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} x_0 & \text{for}\
\begin{bmatrix}
-1 & 0 & 1 & 1 \\
-1 & 0 & 1 & 1
\end{bmatrix} x_0 \leq 0 \\
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} x_0 & \text{for}\
\begin{bmatrix}
1 & 1 & 0 & -1 \\
1 & 1 & 0 & -1
\end{bmatrix} x_0 \leq 0.
\end{cases}
\]
Example: Optimal solution

\[
\min \int_0^\infty 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) \, dt
\]

Assume that the system initially starts at \((x_1, x_2, x_3, x_4) = (6, 6, 6, 6)\).

<table>
<thead>
<tr>
<th>Mode</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode {1, 4}</td>
<td>9</td>
</tr>
<tr>
<td>mode {2, 4}</td>
<td>8</td>
</tr>
<tr>
<td>mode {1, 3}</td>
<td>6</td>
</tr>
<tr>
<td>mode {4}</td>
<td>5</td>
</tr>
<tr>
<td>mode {1}</td>
<td>4</td>
</tr>
<tr>
<td>mode {2}</td>
<td>3</td>
</tr>
<tr>
<td>mode {3}</td>
<td>2</td>
</tr>
<tr>
<td>mode {∅}</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\mu c\)-rule Total costs: 504.

Min. time Total costs: 468.

Optimal Total costs: 456.
Example: Optimal solution

\[
\min \int_0^\infty 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) \, dt
\]

Assume that the system initially starts at \((x_1, x_2, x_3, x_4) = (6, 6, 6, 6)\).

<table>
<thead>
<tr>
<th>Mode</th>
<th>Rate</th>
<th>(\mu c)-rule</th>
<th>Min. time</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode {1, 4}</td>
<td>9</td>
<td>Total costs: 504.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mode {2, 4}</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mode {1, 3}</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mode {4}</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mode {1}</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mode {2}</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mode {3}</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mode \emptyset</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

Using the mpQP-approach we can solve the problem for

- Given cost vector c
- Arbitrary initial condition

The controller becomes a "lookup table".
Summary

Using the mpQP-approach we can solve the problem for

- Given cost vector c
- Arbitrary initial condition

The controller becomes a "lookup table".

Remaining questions

- Can we solve the problem for arbitrary c?
- Can we describe the controller more elegantly?
A dynamic programming like approach

Let $\mu_i > 0$ and $c_i > 0$ be given such that the sequence of modes remains the same, i.e. $0 < \mu_3 c_3 \leq \mu_2 c_2 < \mu_1 c_1 \leq \mu_4 c_4 \leq \mu_1 c_1 + \mu_3 c_3$

Step 1

Assume that **only the final five modes** are given, i.e. only mode $\{4\}$, mode $\{1\}$, mode $\{2\}$, mode $\{3\}$, and mode \emptyset.

/department of mechanical engineering
A dynamic programming like approach

Let $\mu_i > 0$ and $c_i > 0$ be given such that the sequence of modes remains the same, i.e. $0 < \mu_3 c_3 \leq \mu_2 c_2 < \mu_1 c_1 \leq \mu_4 c_4 \leq \mu_1 c_1 + \mu_3 c_3$

Step 1

Assume that only the final five modes are given, i.e. only mode $\{4\}$, mode $\{1\}$, mode $\{2\}$, mode $\{3\}$, and mode \emptyset.

Solution is simple: $\tau_i = x_{i0}/\mu_i$.
Let $\mu_i > 0$ and $c_i > 0$ be given such that the sequence of modes remains the same, i.e. $0 < \mu_3 c_3 \leq \mu_2 c_2 < \mu_1 c_1 \leq \mu_4 c_4 \leq \mu_1 c_1 + \mu_3 c_3$

Step 1

Assume that only the final five modes are given, i.e. only mode $\{4\}$, mode $\{1\}$, mode $\{2\}$, mode $\{3\}$, and mode \emptyset.

Solution is simple: $\tau_i = x_{i0}/\mu_i$.

Cost to go:

$$\frac{1}{2}x^T\begin{bmatrix}
 c_1/\mu_1 & c_2/\mu_1 & c_3/\mu_1 & c_1/\mu_4 \\
 c_2/\mu_1 & c_2/\mu_2 & c_3/\mu_2 & c_2/\mu_4 \\
 c_3/\mu_1 & c_3/\mu_2 & c_3/\mu_3 & c_3/\mu_4 \\
 c_1/\mu_4 & c_2/\mu_4 & c_3/\mu_4 & c_4/\mu_4
\end{bmatrix}x$$
A dynamic programming approach

Step 2
Assume that only the final six modes are given, i.e. only mode \{1, 3\}, mode \{4\}, mode \{1\}, mode \{2\}, mode \{3\}, and mode \emptyset.

Costs made during mode \{1, 3\}:

\[
c_{13} \tau_{13} x_1 + (x_1 - \tau_{13} \mu_1)^2 + c_{23} \tau_{13} x_2 + c_{33} \tau_{13} x_3 + (x_3 - \tau_{13} \mu_3)^2 + c_{43} \tau_{13} x_4
\]

Remaining cost to go:

\[
\begin{pmatrix}
 x_1 - \tau_{13} \mu_1 \\
 x_2 \\
 x_3 - \tau_{13} \mu_3 \\
 x_4
\end{pmatrix}
\begin{pmatrix}
 c_{11} / \mu_1 \\
 c_{21} / \mu_1 \\
 c_{31} / \mu_1 \\
 c_{41} / \mu_1 \\
 c_{22} / \mu_2 \\
 c_{32} / \mu_2 \\
 c_{33} / \mu_3 \\
 c_{43} / \mu_3 \\
 c_{24} / \mu_4 \\
 c_{34} / \mu_4 \\
 c_{35} / \mu_5 \\
 c_{45} / \mu_5 \\
 c_{44} / \mu_4 \\
\end{pmatrix}
\begin{pmatrix}
 x_1 - \tau_{13} \mu_1 \\
 x_2 \\
 x_3 - \tau_{13} \mu_3 \\
 x_4
\end{pmatrix}
\]
A dynamic programming approach

Step 2
Assume that only the final six modes are given, i.e. only mode \{1, 3\}, mode \{4\}, mode \{1\}, mode \{2\}, mode \{3\}, and mode \emptyset. We only need to determine $0 \leq \tau_{13} \leq \min(x_1/\mu_1, x_3/\mu_3)$.

Costs made during mode $\{1, 3\}$:

\[
c_{1\tau_{13}}x_1 + (x_1 - \tau_{13}\mu_1)^2 + c_{2\tau_{13}}x_2 + c_{3\tau_{13}}x_3 + (x_3 - \tau_{13}\mu_3)^2 + c_{4\tau_{13}}x_4
\]

Remaining cost to go:

\[
\begin{bmatrix}
 x_1 - \tau_{13}\mu_1 \\
 x_2 \\
 x_3 - \tau_{13}\mu_3 \\
 x_4
\end{bmatrix}
\begin{bmatrix}
 c_{1/\mu_1} & 0 & 0 & 0 \\
 0 & c_{2/\mu_1} & 0 & 0 \\
 0 & 0 & c_{3/\mu_1} & 0 \\
 0 & 0 & 0 & c_{4/\mu_1}
\end{bmatrix}
\begin{bmatrix}
 x_1 - \tau_{13}\mu_1 \\
 x_2 \\
 x_3 - \tau_{13}\mu_3 \\
 x_4
\end{bmatrix}
\]
A dynamic programming approach

Step 2

Assume that only the final six modes are given, i.e. only mode \{1, 3\}, mode \{4\}, mode \{1\}, mode \{2\}, mode \{3\}, and mode \emptyset.

We only need to determine \(0 \leq \tau_{13} \leq \min(x_1/\mu_1, x_3/\mu_3)\)

Costs made during mode \{1, 3\}:

\[
c_1 \tau_{13} \frac{x_1 + (x_1 - \tau_{13}\mu_1)}{2} + c_2 \tau_{13} x_2 + c_3 \tau_{13} \frac{x_3 + (x_3 - \tau_{13}\mu_3)}{2} + c_4 \tau_{13} x_4
\]

Remaining cost to go:

\[
\begin{pmatrix}
 x_1 - \tau_{13}\mu_1 \\
 x_2 \\
 x_3 - \tau_{13}\mu_3 \\
 x_4
\end{pmatrix}^T
\begin{bmatrix}
 c_1/\mu_1 & c_2/\mu_1 & c_3/\mu_1 & c_1/\mu_4 \\
 c_2/\mu_1 & c_2/\mu_2 & c_3/\mu_2 & c_2/\mu_4 \\
 c_3/\mu_1 & c_3/\mu_2 & c_3/\mu_3 & c_3/\mu_4 \\
 c_1/\mu_4 & c_2/\mu_4 & c_3/\mu_4 & c_4/\mu_4
\end{bmatrix}
\begin{pmatrix}
 x_1 - \tau_{13}\mu_1 \\
 x_2 \\
 x_3 - \tau_{13}\mu_3 \\
 x_4
\end{pmatrix}
\]
Step 2 (continued)
We need to minimize the additional cost to go:

$$\mu_3 c_3 \tau_{13} \left(\tau_{13} - \left[\frac{x_1}{\mu_1} + \frac{x_2}{\mu_2} + \frac{x_3}{\mu_3} + \frac{\mu_1 c_1 + \mu_3 c_3 - \mu_4 c_4}{\mu_3 c_3} \frac{x_4}{\mu_4} \right] \right)$$

subject to $0 \leq \tau_{13} \leq \min(x_1/\mu_1, x_3/\mu_3)$.
Step 2 (continued)

We need to minimize the additional cost to go:

\[
\mu_3 c_3 \tau_{13} \left[\tau_{13} - \left(\frac{x_1}{\mu_1} + \frac{x_2}{\mu_2} + \frac{x_3}{\mu_3} + \frac{\mu_1 c_1 + \mu_3 c_3 - \mu_4 c_4}{\mu_3 c_3} \frac{x_4}{\mu_4} \right) \right] \geq 0
\]

subject to \(0 \leq \tau_{13} \leq \min(x_1/\mu_1, x_3/\mu_3) \).

Optimal value: \(\tau_{13}^* = \min(x_1/\mu_1, x_3/\mu_3) \).
Step 2 (continued)

We need to minimize the additional cost to go:

$$
\mu_3 c_3 \tau_{13} - \left(\frac{x_1}{\mu_1} + \frac{x_2}{\mu_2} + \frac{x_3}{\mu_3} + \frac{\mu_1 c_1 + \mu_3 c_3 - \mu_4 c_4}{\mu_3 c_3} \right) \geq 0
$$

subject to $0 \leq \tau_{13} \leq \min(\frac{x_1}{\mu_1}, \frac{x_3}{\mu_3})$.

Optimal value: $\tau_{13}^* = \min(\frac{x_1}{\mu_1}, \frac{x_3}{\mu_3})$.

Step 3 and 4

Along the same lines (add remaining two modes one at a time)
Result if $0 < \mu_3 c_3 \leq \mu_2 c_2 < \mu_1 c_1 \leq \mu_4 c_4 \leq \mu_1 c_1 + \mu_3 c_3$

Stay in a mode until a condition is satisfied, then move to the next one

\begin{align*}
\text{mode } \{4\}: & \quad x_4 = 0 \\
\text{mode } \{1\}: & \quad x_1 = 0 \\
\text{mode } \{2\}: & \quad x_2 = 0 \\
\text{mode } \{3\}: & \quad x_3 = 0 \\
\text{mode } \emptyset: & \quad \text{Stay in this mode.}
\end{align*}
Result if $0 < \mu_3c_3 \leq \mu_2c_2 < \mu_1c_1 \leq \mu_4c_4 \leq \mu_1c_1 + \mu_3c_3$

Stay in a mode until a condition is satisfied, then move to the next one

mode $\{1, 3\}$: $x_1 = 0$ or $x_3 = 0$
mode $\{4\}$: $x_4 = 0$
mode $\{1\}$: $x_1 = 0$
mode $\{2\}$: $x_2 = 0$
mode $\{3\}$: $x_3 = 0$
mode \emptyset: Stay in this mode.
Result if \(0 < \mu_3 c_3 \leq \mu_2 c_2 < \mu_1 c_1 \leq \mu_4 c_4 \leq \mu_1 c_1 + \mu_3 c_3 \)

Stay in a mode until a condition is satisfied, then move to the next one.

\begin{align*}
\text{mode } \{2, 4\}: \quad & x_2 = 0 \text{ or } x_4 = 0 \\
\text{mode } \{1, 3\}: \quad & x_1 = 0 \text{ or } x_3 = 0 \\
\quad & \quad \text{mode } \{4\}: \quad x_4 = 0 \\
\quad & \quad \text{mode } \{1\}: \quad x_1 = 0 \\
\quad & \quad \text{mode } \{2\}: \quad x_2 = 0 \\
\quad & \quad \text{mode } \{3\}: \quad x_3 = 0 \\
\quad & \quad \quad \text{mode } \emptyset: \quad \text{Stay in this mode.}
\end{align*}
Result if $0 < \mu_3 c_3 \leq \mu_2 c_2 < \mu_1 c_1 \leq \mu_4 c_4 \leq \mu_1 c_1 + \mu_3 c_3$

Stay in a mode until a condition is satisfied, then move to the next one

mode $\{1, 4\}$: $x_1 = 0$ or $x_4 = 0$ or $x_4 \leq x_2 \land x_1 \leq x_3 \land \left(\mu_1 c_1 - \mu_2 c_2 + \mu_3 c_3\right) \left(\frac{x_1}{\mu_1} + \frac{x_4}{\mu_4}\right) \leq \mu_3 c_3 \left(\frac{x_2}{\mu_2} + \frac{x_3}{\mu_3}\right)$,

mode $\{2, 4\}$: $x_2 = 0$ or $x_4 = 0$

mode $\{1, 3\}$: $x_1 = 0$ or $x_3 = 0$

mode $\{4\}$: $x_4 = 0$

mode $\{1\}$: $x_1 = 0$

mode $\{2\}$: $x_2 = 0$

mode $\{3\}$: $x_3 = 0$

mode \emptyset: Stay in this mode.
Dynamic programming approach (general case)

Notice that if $c_4\mu_4 > c_1\mu_1 + c_3\mu_3$ mode $\{4\}$ has a higher rate of cost decrease than mode $\{1, 3\}$.
Dynamic programming approach (general case)

Notice that if $c_4 \mu_4 > c_1 \mu_1 + c_3 \mu_3$ mode $\{4\}$ has a higher rate of cost decrease than mode $\{1, 3\}$.

Consider modes $m_1, m_2, \ldots, m_M = \emptyset$, ordered by rate of cost decrease. We define the ith subproblem as follows:

- only modes $m_{M-i+1}, m_{M-i+2}, \ldots m_M$ are allowed
- (initial) state restrictions:

\[
\begin{align*}
x_j(t) & \geq 0 \quad \text{for all } j \in \bigcup_{k=M-i+1}^{M} m_k \quad \forall t \geq 0 \\
x_j(t) & = 0 \quad \text{for all } j \not\in \bigcup_{k=M-i+1}^{M} m_k \quad \forall t \geq 0
\end{align*}
\]
Conclusions

Summary

- Optimal control problem: emptying deterministic single server multiclass queueing system without arrivals
- Server serves several queues simultaneously
- Sequence of modes: μc
- Buffers not necessarily empty at end of mode.
- Presented mpQP approach
- Presented dynamic programming approach
Conclusions

Summary

- Optimal control problem: emptying deterministic single server multiclass queueing system without arrivals
- Server serves several queues simultaneously
- Sequence of modes: μ_c
- Buffers not necessarily empty at end of mode.
- Presented mpQP approach
- Presented dynamic programming approach

Future work

- Extend to systems with arrivals (SCLP (Gideon Weiss); stability)
- Extend to stochastic setting
- Include setup times (more challenging)
Separate Continuous Linear Program

\[
\min_u \int_0^T \begin{bmatrix} 4 & 3 & 2 & 5 \end{bmatrix} x(s) \, ds
\]

subject to

\[
\dot{x}(t) = \begin{bmatrix}
0.2 \\
0.2 \\
0.4 \\
0.4
\end{bmatrix}
- \begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
u(t) \\
x(0)
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
u(t)
\end{bmatrix}
= 1
\]

\[
x_i(t), u_i(t) \geq 0 \quad \forall t \geq 0
\]
Stability

- Arrival rate λ_i. Define $\rho_i = \lambda_i / \mu_i$.
- Necessary condition for stability: $\max_{C \in C} \sum_{i \in C} \rho_i < 1$
- Not sufficient

For stability not only:

$$\rho_1 + \rho_2 < 1 \quad \rho_2 + \rho_3 < 1 \quad \rho_3 + \rho_4 < 1 \quad \rho_4 + \rho_5 < 1 \quad \rho_5 + \rho_1 < 1$$

but also:

$$\rho_1 + \rho_2 + \rho_3 + \rho_4 + \rho_5 < 2.$$
Consider $\mu_i = 1$, setup times: 1, $c = (0.34, 0.33, 0.32, 0.35)^T$.

- First mode $\{1, 4\}$, then mode $\{2, 4\}$, next mode $\{1, 3\}$, finally mode $\{3\}$. Resulting cost: 1039.68

- First mode $\{2, 4\}$, then mode $\{1, 4\}$, next mode $\{1, 3\}$, finally mode $\{3\}$. Resulting cost: 1039.60

Reduction due to fact that during setups, the system might still partially serve certain classes.