
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

RELATING CHI TO HYBRID AUTOMATA

Bert van Beek
Niek G. Jansen
Koos E. Rooda

Ramon R.H. Schiffelers

Department of Mechanical Engineering
Eindhoven University of Technology
P.O.Box 513, 5600 MB, Eindhoven,

THE NETHERLANDS

Ka L. Man
Michel A. Reniers

Department of Mathematics and Computer Science
Eindhoven University of Technology
P.O.Box 513, 5600 MB, Eindhoven,

THE NETHERLANDS

ABSTRACT

A hybrid automaton is one of the most popular formal
models for hybrid system specification. The Chi lan-
guage is a hybrid formalism for modeling, simulation
and verification. It consists of a number of operators
that operate on all process terms, including differen-
tial algebraic equations. This paper relates the two for-
malisms by means of a formal translation from a hybrid
automaton model to a Chi model, and a comparison of
the semantics of the two models in terms of their respec-
tive transition systems. The comparison is illustrated
by means of three examples: a thermostat, a railroad
gate controller, and dry friction.

1 INTRODUCTION

A hybrid automaton (Alur et al. 1995; Henzinger
2000b; Gueguen and Lefebvre 2001; Johansson et al.
1999) is one of the most popular formal models for hy-
brid system specification. This paper relates the hybrid
automaton of Henzinger (2000b) to the hybrid χ (Chi)
formalism.

The χ formalism was originally designed as a model-
ing and simulation language for specification of discrete-
event (DE), continuous time (CT) or combined DE/CT
models (so-called hybrid models). The language and
simulator have been successfully applied to a large num-
ber of industrial cases, such as an integrated circuit
manufacturing plant, a brewery, and process industry
plants (van Beek, van den Ham, and Rooda 2002).

One of the goals of our research is the development
of a hybrid verification formalism / modeling and simu-
lation language with associated verification and simula-
tion tools. The recent formalization of the χ language,
including the continuous part, resulted in the χσh

pro-
cess algebra (Schiffelers et al. 2003a) and in a more
elegant χ modeling language. The χ language now has
the same operators, with the same semantics, as the χσh

formal language. The χ modeling language extends χσh

with, among others, parameterized process and experi-

ment definitions, and with instantiations of the defined
processes and experiments. A straightforward syntac-
tical translation of χ to χσh

is described in (Schiffelers
et al. 2003b). The relation between χ and χσh

is illus-
trated in Figure 1. A χσh

process can be simulated and
properties can be verified. A χ experiment can also
be compiled directly to obtain a simulator. Reasons
for this can be to gain speed, or to make it easier to
provide user friendly error information related to the χ

specification.

The χ language is related both to simulation lan-
guages, see van Beek and Rooda (2000) and to for-
mal languages such as HyPa (Cuijpers and Reniers
2003), hybrid formalisms based on CSP (Jifeng 1994),
(Chaochen, Ji, and Ravn 1996), hybrid I/O automata
(Lynch, Segala, and Vaandrager 2003), hybrid au-
tomata (Alur et al. 1995), and to work derived from
hybrid automata, such as Charon (Alur et al. 2001)
and Masaccio (Henzinger 2000a). In particular, the
χ disrupt, choice, recursion, and reinitialization opera-
tors are inspired by HyPA (Cuijpers and Reniers 2003).
Overall, χ is more expressive than other formal lan-
guages, see Schiffelers et al. (2003a). It is suited to
1) modeling of a wide range of control systems, such
as regulatory control, sequence control, scheduling al-
gorithms, hierarchical control, agent based control; 2)
modeling of complex concurrent interacting physical
systems; and 3) modeling of DAE-based hybrid phe-
nomena, consistent initialization of higher index sys-

χ exp. χσh
process

compilation

simulation verification

translation

Figure 1: From χ to χσh

van Beek, Jansen, Man, Reniers, Rooda and Schiffelers

tems (Fábián, van Beek, and Rooda 2001), and mode
switches accompanied by index changes such as treated
in Mosterman and Ciolfi (2002).

In Section 2, a general translation scheme from a gen-
eral hybrid automaton to a corresponding χ specifica-
tion is presented. Examples of modeling a rail gate
controller and the dry friction phenomenon using both
hybrid automata and χ are presented in Section 3 and
4.

2 TRANSLATION

In this section, a general translation scheme from a hy-
brid automaton to a corresponding χ specification is
presented. The syntax of the χ language is given in the
Appendix.

2.1 Description Hybrid Automaton

A hybrid automaton (Henzinger 2000b) consists of the
following components.

• A finite set of (real-valued) variables X =
{x1, . . . , xn}, the set Ẋ = {ẋ1, . . . , ẋn} which de-
notes the first derivatives of the variables, and the
set X ′ = {x′

1, . . . , x
′
n} which denotes the primed

variables that represent values at the conclusion of
a discrete change.

• A finite directed multi-graph (V, E), where V de-
notes a set of vertices (control modes) and E de-
notes a set of edges (control switches).

• Three vertex labeling functions init, inv, and flow
that assign to each control mode v ∈ V a predicate
for initial, invariant and flow conditions, respec-
tively. The free variables of the initial and invari-
ant predicates are from X . The free variables of
the flow predicates are from X ∪ Ẋ.

• An edge labeling function jump, that assigns to
each edge e ∈ E, a jump condition which is a pred-
icate whose free variables are from X ∪ X ′.

• A finite set Σ of events, and an edge labeling func-
tion event : E → Σ that assigns to each edge an
event.

In order to translate a hybrid automaton to χ, two
additional functions are defined on a hybrid automaton:
Function edges ∈ V → P(E) returns a set of outgoing
edges for a location, and function target ∈ E → V re-
turns the target vertex of an edge.

2.2 Translation Scheme

Consider a hybrid automaton model with n vari-
ables (X = {x1, . . . , xn}) and k control modes (V =
{v1, . . . , vk}) to be translated to a corresponding χ spec-
ification. The translation is defined as follows:

proc HybridAutomatonInχ () =
|[cont x1, . . . , xn : real
, {v1 7→ (inv(v1) ‖ flow(v1))�

(⊕e:e∈edges(v1) T (jump(e)) �
inv(target(e)) → skip; target(e))

...
, vk 7→ (inv(vk) ‖ flow(vk))�

(⊕e:e∈edges(vk) T (jump(e)) �
inv(target(e)) → skip; target(e))

}
| init(v1) � v1 ⊕ . . . ⊕ init(vk) � vk

]|

A vertex vi of the hybrid automaton model is trans-
lated using a corresponding recursion variable vi in the
χ model. The process term associated with this re-
cursion variable consists of the process term describing
the continuous behavior of the vertex, disrupted by the
choice composition of all individual process terms of
the outgoing edges of this vertex. Below, these process
terms are explained in more detail.

The continuous behavior of a vertex vi is translated to
the parallel composition of its invariant and flow pred-
icates (inv(vi) ‖ flow(vi)).

For each outgoing edge, the jump predicate of
that edge is translated to a reinitialization predicate
(T (jump(e))), where function T renames variables oc-
curring with a prime “′” superscript in a jump predicate
to variables with superscript “+”. E.g. T (x′ − y′ = z)
becomes x+ − y+ = z. Here, x+ and y+ refer to the val-
ues of x and y after the discrete jump that is equivalent
to the notation x′ used in Henzinger (2000b).

The event label of the edge is translated to the skip

process term. This translation implies an event abstrac-
tion which is explained in more detail in Section 2.3.

The semantics of hybrid automata contain a kind of
look-ahead such that after a control switch the invariant
of the target vertex of an edge must hold (using the val-
ues of the variables as defined after the reinitialization
according to the jump conditions), otherwise the transi-
tion cannot occur. Using χ, this look-ahead is modeled
by means of guarding the skip process term with the
invariant predicate of its target vertex (inv(target(e))).

After the transition, the behavior is specified by the
recursion variable associated with the target vertex
(target(e)).

The choice operator (⊕) is used to combine the indi-
vidual process terms of the outgoing edges.

van Beek, Jansen, Man, Reniers, Rooda and Schiffelers

Note that for edges(vi) = {e1, . . . , ek}, nota-
tion (⊕e:e∈edges(vi)(T (jump(e)) � inv(target(e)) →
skip; target(e)), denotes the process term
T (jump(e1))� inv(target(e1))→ skip; target(e1)⊕. . .⊕
T (jump(ek)) � inv(target(ek)) → skip; target(ek)) .

The straightforward translation of a hybrid automa-
ton to a χ model shows that χ is expressive enough to
model phenomena that are usually studied by means of
a hybrid automaton. The translation from a χ model to
a hybrid automaton is more difficult since χ has a richer
set of operators, especially for specification of discrete-
event systems. Also, χ has more support for DAE-based
modeling of hybrid phenomena, such as mentioned in
the introduction. The translation from parallel compo-
sition of hybrid automata to parallel composition of χ

process terms and vice versa is further complicated be-
cause of differences in synchronization behavior of the
two languages. Where all hybrid automata that share
the same event are forced to synchronize, in χ, syn-
chronization between process terms that share commu-
nication channels is always on a point to point basis,
between exactly two processes.

2.3 Semantical Comparison

Previously, a translation of a hybrid automaton to a χ

process has been described at the syntactical level. In
this section, the relation between a hybrid automaton
and its associated χ process is discussed on the seman-
tical level.

The semantics of a hybrid automaton (Henzinger
2000b) is a timed transition system with two types of
transitions: action transitions (corresponding to con-
trol switches) and time transitions (corresponding to
continuous behavior in a control mode). On the other
hand, the semantics of a χ process is a hybrid transition
system (Cuijpers, Reniers, and Heemels 2002; Schiffel-
ers et al. 2003a) which also has these two types of
transitions.

The main difference between these semantics is in the
labeling of the action and time transitions. In timed
transition systems the labels of action transitions are
simply the events of the hybrid automaton, whereas
the labels of the action transitions of a hybrid tran-
sition system also contain the valuation of the model
variables. For time transitions, the labels in a timed
transition system contain only the duration of the time
transition whereas time transitions in hybrid transition
systems also have the trajectory of the model variables
as a label.

A second difference is the existence of time transi-
tions with a duration of zero in the timed transition
systems. Each state in the semantics of a hybrid au-
tomaton has a zero-duration time transition to itself.

Between different states there never is a zero-duration
time transition. Such transitions are not present in the
hybrid transition systems associated to χ processes.

A timed transition system can have many initial
states whereas a hybrid transition system has only one
initial state. This one initial state captures the behavior
of all the initial states of the timed transition system.

Finally, the translation presented before shows that
the events of the control switches are all translated into
the process term skip. So, in the timed transition sys-
tem associated with a hybrid automaton a wide range
of action labels representing events may occur, whereas
in the hybrid transition system of the corresponding
χ process only internal transitions (denoted τ) occur.
Thus, the translation abstracts from the names of the
events.

In order to describe the relation between a hybrid au-
tomaton and its χ-‘equivalent’ more precisely, first some
abstraction mechanisms are introduced to overcome the
above-mentioned differences.

Let ~ be a mapping that maps a hybrid transition sys-
tem onto a timed transition system by removing valua-
tions from action transitions and trajectories from time
transitions.

Let ι be a mapping that maps a timed transition
system onto a timed transition system where all labels
of action transitions are replaced by the label τ and
where all zero-duration transitions are removed.

Let A be a hybrid automaton and let P be the χ

process associated to it by the translation defined in
this paper. Furthermore, let T and H be the semantics
of A and P , respectively.

A

P

T

H

event

abstraction

variable

semantics

~(H)

ι(T)
abstraction

semantics

translation ↔

Then, there exists a (strong-)bisimulation relation
(↔) between the states of ι(T) and the states of ~(T)
such that any transition from an initial state of T can be
simulated by the initial state of ~(H) and each transi-
tion from the initial state of ~(H) is simulated by some
initial state of T .

2.4 A Thermostat

This example shows the translation of a hybrid automa-
ton to χ. The hybrid automaton of Figure 2 models
a thermostat. Variable x represents the temperature.
The control modes are On and Off . Figure 2 is taken

van Beek, Jansen, Man, Reniers, Rooda and Schiffelers

Off

x ≥ 18

ẋ = −0.1x

x > 21

x < 19

On

ẋ = 5 − 0.1x

x ≤ 22

x = 20

Figure 2: A Hybrid Automaton Model of a Thermostat

from Henzinger (2000b), where the usual informal no-
tation is used: events on the edges are ignored, and the
jump conditions are incomplete. In particular, in Fig-
ure 2 both edges should have an event label, the jump
conditions of the edges should have been x < 19∧x′ = x

and x > 21 ∧ x′ = x, respectively. In this paper we use
the same informal notation for the hybrid automata in
the examples, to improve readability. The χ specifica-
tions, however are formal.

Initially, the temperature equals 20 degrees, and the
heater is off (control mode Off). The temperature falls
according to the flow condition ẋ =−0.1x. According to
the jump condition x < 19, the heater may go on as soon
as the temperature falls below 19 degrees. Due to the
invariant condition x ≥ 18, at the latest the heater will
go on when the temperature equals 18 degrees. In the
control mode On, the heater is on, and the temperature
rises according to the flow condition ẋ = 5−0.1x. When
the temperature rises above 21 degrees, the heater may
turn off. Due to the invariant condition x ≤ 22, at the
latest the heater will turn off when the temperature
equals 22 degrees.

Using χ, process Thermostat consists of a continu-
ous variable x which represents the temperature, and
two recursion variables On and Off which refer to the
control modes On and Off of the hybrid automaton
model, respectively. Initially the heater is off and the
temperature is 20 degrees. The mode Off can delay as
long as x ≥ 18. The temperature decreases at a rate of
ẋ = −0.1x. When the guard x < 19 on the right hand
side of the disrupt operator � becomes true, and the
guard (x ≤ 22) of the skip process term evaluates to
true, the skip process term can take over the delay by
means of performing a τ action. After that, the recur-
sion variable On takes over. The mode On can delay as
long as x ≤ 22. When the guard x > 21 becomes true,
skip can perform a τ action and the recursion variable
Off takes over.

proc Thermostat () =
|[cont x : real

, {Off 7→(x ≥ 18 ‖ ẋ = −0.1x)�
(x < 19 � x ≤ 22 → skip;On)

,On 7→(x ≤ 22 ‖ ẋ = 5 − 0.1x)�
(x > 21 � x ≥ 18 → skip;Off)

}
| x+ = 20 � Off ⊕ false � On

]|

Modeling the thermostat directly in χ leads to the
following specification:

proc Thermostat () =
|[cont x : real = 20
, {Off 7→ (x ≥ 18 ‖ ẋ = −0.1x) �(x < 19� On)

,On 7→ (x ≤ 22 ‖ ẋ = 5 − 0.1x)�(x > 21� Off)
}

| Off

]|

The hybrid transition system of this specification
contains only time transitions, i.e. there are no action
transitions due to switching from one control mode into
another.

3 RAILROAD GATE CONTROL

In Section 2, a general translation from a hybrid au-
tomaton to χ is defined. This section shows that mod-
eling directly in χ, and using χ’s expressivity, leads to
more elegant models.

Consider a train on a circular track, a gate and a
controller. When the train approaches the gate, the
controller must lower the gate. The controller has a re-
action delay of u time units. After the train has passed
the gate the controller must raise the gate. The pur-
pose of the model is to determine the value of u, such
that the gate is always fully lowered when the train is
at a certain distance from the gate.

Figure 3 shows the hybrid automaton model of the
railroad gate controller as defined in Henzinger (2000b).

The χ model takes into account that there is only
one train on the circular track, which implies that
the transitions of the self loops of the controller au-
tomaton can never occur. Figure 4 shows the iconic
model of the railroad gate controller. The dashed lines
with arrow heads represent synchronization channels
(approach , exit , raise , lower).

Process Rail is a formal specification of the in-
formal iconic model from Figure 4. Channels
approach , exit , raise and lower are of type void, which
means that they are used for pure synchronization, no
data is communicated.

proc Rail(u : real) =
|[chan approach , exit , raise , lower : void
, cont x : real, cont y : real = 90

van Beek, Jansen, Man, Reniers, Rooda and Schiffelers

x = 1000

x = 0

Train

NearFar

Past

approach

Gate

y = 90

y = 0

Idle

z′ = 0

exit

x :∈ [1900, 4900]
x = −100 −→

Move up Open

Controller

About to
lower

About to
raise

ż = 1 ∧ u̇ = 0

Closed

x ≤ 5000

exit

raise raise

lower

raise

lower

lower lower

lower

approach
approach

raise

exit

exit

approach

Move down

raise

z′ = 0

−50 ≤ ẋ ≤ −30

x ≥ −100

ẏ = 9

y ≤ 90

ẏ = 0

y = 0

ẏ = −9

y ≥ 0

ż = 1 ∧ u̇ = 0

z ≤ u

ż = 1 ∧ u̇ = 0

z ≤ u

x ≥ 1000

−50 ≤ ẋ ≤ −40

x ≥ 0

−50 ≤ ẋ ≤ −30

ẏ = 0

y = 90

Figure 3: Railroad Gate Control Automaton

| Train(x, approach , exit) || Gate(y, raise, lower)
|| C(approach , exit , raise , lower , u)
]|

A train is modeled by process definition Train , which

Gate Train
raise exit

approachlower C

Figure 4: Iconic Model of the Railroad Gate Controller

consists of a reinitialization x+ ≤ 5000� followed by an
infinite loop (∗(. . .)). The velocity of the train can be
any function of time between −50 and −40. The pro-
cess waits until the train has reached position x = 1000
and then synchronizes with the controller π(approach !).
Maximal progress operator π enforces the synchroniza-
tion approach ! to take place immediately, without de-
lay. The train is now approaching the gate. If the train
has reached the exit position, such that x = −100, the
process synchronizes with the controller, the position x

of the train is reset to a value between 1900 and 4900,
and the loop is re-executed.

proc Train(ext x : real, approach , exit : ! void) =
|[x+ ≤ 5000 �

∗((−50 ≤ ẋ ≤ −40 [] ∇x ≥ 1000); π(approach !)
; (−50 ≤ ẋ ≤ −30 [] ∇x ≤ −100)
; 1900 ≤ x+ ≤ 4900 � π(exit !)
)

]|

A gate is modeled by process definition Gate, which
consists of a parallel composition of an equation (ẏ = n)
and an infinite loop. The infinite loop is an alterna-
tive composition of four process terms. The first pro-
cess term waits until the gate is lowered (y = 0) and
then stops the gate. The second process term waits un-
til the gate is raised (y = 90). The third and fourth
process term wait for synchronization with the con-
troller in order to raise or lower the gate (raise ? and
lower ? respectively). The four process terms delay in
parallel until one of the four events (∇ y ≤ 0, ∇ y ≥
90, raise ?, lower ?) takes place.

proc Gate(ext y : real, raise , lower : ? void) =
|[var n : nat = 0
| ẏ = n || ∗(n < 0 → ∇ y ≤ 0; n := 0

[] n > 0 → ∇ y ≥ 90; n := 0
[] raise ?; n := 9
[] lower ?; n := −9
)

]|

A controller is modeled by process definition C which
consists of an infinite loop of three alternatives. It waits
in parallel for one of the following events to occur: an
approaching train (approach ?), a leaving train (exit ?),

van Beek, Jansen, Man, Reniers, Rooda and Schiffelers

or if atr is true, the end of the reaction delay (∆u� skip)
that precedes raising of the gate. Parameter u is used
to model the reaction delay in the controller. Process
term ∆ u terminates after u units of time, and process
term ∆u � skip terminates after any interval between
0 and u units of time, because the skip internal action
can take over the delay at any point in time. Boolean
variable atr is true if and only if the hybrid automaton
that models the controller is in control mode (vertex)
‘About to raise’.

proc C(approach , exit : ? void
, raise , lower : ! void, u : real
)=

|[var atr : bool = false
| ∗(approach ?; atr := false; (∆u � skip); π(lower !)

[] exit ?; atr := true
[] atr → (∆ u � skip); atr := false; π(raise !)
)

]|

4 DRY FRICTION PHENOMENON

Figure 5 shows a driving force Fd applied to a body on
a flat surface with frictional force Ff . When the body
is moving with positive velocity v, the frictional force is
given by Ff = µFN, where FN = mg. When the velocity
of the body is zero and −µ0FN ≤ Fd ≤ µ0FN (µ0 > µ),
the frictional force neutralizes the applied driving force.

F

d

F

N

F

f

Figure 5: Dry Friction

In this section, the dry friction phenomenon is mod-
eled using χ. Furthermore, it is shown that an attempt
to model this phenomenon using hybrid automata as
defined in Section 2.1 failed.

4.1 χ Specification of Dry Friction

In the χ specification of the dry friction phenomenon,
recursion variables are used to specify the modes “neg”,
“stop”, and “pos”. The mode “stop” requires that v is
initially 0. The mode “stop” is maintained for as long
as the parallel composition (v = 0 → v = 0 ‖ − µ0FN ≤
Fd ≤ µ0FN) can delay. Otherwise the process term
(Fd ≤ −µ0FN → neg ⊕ Fd ≥ µ0FN → pos) after the
disrupt operator � takes over. The choice operator ⊕
specifies that either process term Fd ≤ −µ0FN → neg
or Fd ≥ µ0FN → pos is executed. Therefore, depend-
ing on the value of Fd, either the process term spec-

ified by recursion variable (mode) “neg” or “pos” is
executed. The mode “pos” (“neg”) is maintained until
condition v ≤ 0 ∧ Fd < µ0FN (v ≥ 0 ∧ Fd > −µ0FN)
becomes true. Using the maximal progress operator
π, action transitions have priority over time transi-
tions. Therefore, when v ≤ 0 and Fd < µ0FN, the
empty action skip is enabled and immediately executed.
Subsequently the mode “stop” is executed again. Ini-
tially either the mode “neg”, “stop” or “pos” is chosen
(neg ⊕ stop⊕ pos), based on the initial values of v and
Fd. Fd equals the sine function of t; m, FN , µ0 , µ are
constants.

proc Dryfriction(m, FN , µ0 , µ : real)=
|[cont x, v, Fd , t : real
, { stop 7→ (v = 0 → v = 0 || −µ0FN ≤ Fd ≤ µ0FN)

�(Fd ≤ −µ0FN → neg
⊕ Fd ≥ µ0FN → pos
)

, pos 7→ (mv̇ = Fd − µFN || v ≥ 0)
�(v ≤ 0 ∧ Fd < µ0FN → skip; stop)

, neg 7→ (mv̇ = Fd + µFN || v ≤ 0)
�(v ≥ 0 ∧ Fd > −µ0FN → skip; stop)

}
| ṫ = 1 || Fd = sin(t) || ẋ = v || π(neg ⊕ stop ⊕ pos)
]|

4.2 No Hybrid Automaton for Dry Friction?

The hybrid automaton specification in Figure 6 has
three locations “neg”, “stop”, and “pos”. These loca-
tions/modes correspond with the invariants v≤ 0, v =0,
and v ≥ 0, respectively. In the mode “stop”, the friction
force Ff neutralizes the applied driving force Fd and
the velocity v equals 0. The mode “stop” is maintained
for as long as the driving force satisfies the condition
−µ0FN ≤ Fd ≤ µ0FN. If this condition can no longer
be satisfied, the mode becomes “pos” or “neg”, respec-
tively. The condition Fd < µ0FN (Fd > −µ0FN) pre-
vents the automaton to go back to location “stop” im-
mediately after a transition from mode “stop” to “pos”
(“neg”).

The mode “pos”, is maintained for as long as the
condition v ≥ 0 is satisfied. In this mode, frictional force
Ff equals µFN. When this condition can no longer be
satisfied, the mode becomes “stop”.

However, this hybrid automaton does not model the
dry friction phenomenon correctly. Suppose, the au-
tomaton is in the mode “pos”, Fd > µFN, v > 0, and
the driving force Fd decreases. When Fd < µFN, the ve-
locity decreases, and eventually v = 0. Now, the tran-
sition to mode “stop” has to be taken, although the
invariant v ≥ 0 still holds. If this transition would not
be taken, and Fd = µFN, the automaton would remain
in mode “pos”. When the driving force would increase,
the body would start moving when Fd ≥ µFN instead

van Beek, Jansen, Man, Reniers, Rooda and Schiffelers

pos neg

v = 0 ∧
Fd > −µ0FN

v = 0 ∧

stop
Fd < µ0FN

ṫ = 1
ẋ = v

Fd = sin(t)
mv̇ = Fd − µFN

v ≥ 0

ṫ = 1
ẋ = v

Fd = sin(t)
mv̇ = Fd + µFN

v ≤ 0

ṫ = 1
ẋ = v

Fd = sin(t)

v = 0
Fd ≥ −µ0FN

Fd ≤ µ0FN

Fd ≥ µ0FN

Fd ≤ −µ0FN

Figure 6: (Incorrect) Dry Friction Automaton

of Fd ≥ µ0FN. It is not possible to enforce the transi-
tion by removing the equal sign of the invariant v ≥ 0
in mode “pos”. This would disable the transition, be-
cause zero would then become an accumulation point:
v would approach 0 infinitely close, but v would not be-
come equal to zero. Furthermore, it would disable the
transition from mode “stop” to mode “pos”.

Due to the maximal progress operator in χ, the tran-
sition to mode “stop” is taken, even though the equa-
tions in mode “pos” still can perform delay transitions.

The dry friction phenomenon could be modeled using
a “hybrid automaton” if the transition with guard v = 0
(and Fd < µ0FN, or Fd > −µ0FN) would be taken as
soon as its guard became true.

5 CONCLUSIONS

The translation of a single hybrid automaton to χ has
been shown to be straightforward. In general, hybrid
automata should not be translated directly to χ. Mod-
eling directly in χ, and thus using χ’s expressive power,
leads to more elegant models. The formal semantics,
the χ simulator (Fábián 1999) and the model checker
for the discrete-event part of χ (Bos and Kleijn 2002)
are the basis of the new χ simulation and χσh

verifica-
tion tools that will be developed.

APPENDIX: SYNTAX DEFINITION OF χ

In this section, a subset of the syntax of the χ language
is introduced in an extended BNF-like notation, where

brackets ‘[’ and ‘]’ enclose optional items. A process
definition has syntax

PD ::= proc pi ‘(’ [Df] ‘)’ = ‘|[’ [D [‘,’ ‘{’ R ‘}’] ‘|’] P ‘]|’

where pi denotes a process identifier, Df and D denote
declarations, R denotes a parameterless recursive pro-
cess definition, and P denotes a process term.

The declaration of the formal parameters Df of a pro-
cess definition has the following syntax, where vis is
a comma separated list of variable identifiers, cis is a
comma separated list of channel identifiers, and t is a
type.

Df ::= vis ‘:’ t | cis ‘: !’ t | cis ‘: ?’ t

| ext vis ‘:’ t | Df ‘,’ Df

The declaration vis : t denotes the declaration of vari-
ables of type t; cis : !t and cis : ?t denote the dec-
laration of channels cis of type t used for sending or
receiving, respectively; and ext vis : t declares vis as
external (shared) variables of type t.

The declaration of variables and channels in a process
definition D has the following syntax. These variables
and channels are by definition local, and cannot be used
outside the process in which they are declared:

D ::= var vis ‘:’ t [‘=’ c] | cont vis ‘:’ t [‘=’ c]
| chan cis ‘:’ t | D ‘,’ D

R ::= ri ‘7→’ P | R ‘,’ R

where c is a constant expression, ri a recursion vari-
able, and R a recursive process definition, i.e. a partial
function from recursion variables to process terms. The
declarations var vis : t, cont vis : t, and chan cis : t

denote the declaration of discrete variables, continu-
ous variables, and channels of type t respectively. Op-
tionally, variables can be initialized at their declaration
([‘=’ c]).

Process term P is built from atomic process terms
(statements) AP , using operators for combining them:

AP ::= skip | x ‘:=’ e | m ‘!’ e | m ‘?’ x

| u | ‘∆’ en | ‘∇’ bn

P ::= AP | X | i ‘�’ P | b ‘→’ P

| P ‘;’ P | P ‘�’ P | P ‘⊕’ P

| P ‘[]’ P | P ‘ ‖ ’ P | ‘∗’ P

| pi‘(’da‘)’ | π(P)

An informal (concise) explanation of this syntax is
given below.

The process term skip represents an internal action.
The value of variables can be changed instantaneously

van Beek, Jansen, Man, Reniers, Rooda and Schiffelers

through assignments. An assignment is a process term
of the form x := e with x a variable and e an expres-
sion. In principle, the continuous variables change arbi-
trarily over time. Predicates u over discrete variables,
continuous variables, and the derivatives of continuous
variables are used to control these changes. I.e., a pred-
icate restricts the allowed behavior of the continuous
variables. More complex process terms can be obtained
by combining process terms by means of among oth-
ers sequential composition (;), choice (⊕), alternative
composition ([]), parallel composition (‖), prefixing a
process p term by a reinitialization predicate i: i � p,
and guarding a process term p by a boolean expression
b: b → p. The process term i � p denotes the process
term that behaves as p starting from the reinitialized
state if the reinitialization predicate i can be satisfied
and deadlocks otherwise. The process term b → p de-
notes the process term that behaves as process term p

in case the boolean expression b evaluates to true and
deadlocks otherwise.

Processes interact either through the use of shared
variables or by synchronous point-to-point communica-
tion over a channel. By means of m!e, the value of
expression e is sent over channel m. By means of m?x
a value is received from channel m in variable x. The
acts of sending and receiving a value have to take place
at the same moment in time.

Some of the atomic process terms in χ are delay-able
(sending and receiving), others are not delay-able (skip,
assignments). By means of the delay process term ∆en

a process can be forced to delay for the amount of time
units specified by the value of numerical expression en.
A nabla process term of the form ∇bn, where bn repre-
sents a boolean variable or a comparison of real-valued
expressions using ≤, or ≥, terminates by means of an
internal action if bn is true, and blocks otherwise. By
means of the maximal progress operator π, execution
of actions can be given priority over passage of time.

The disrupt operator (�) is used for describing that
a process is allowed to take over execution from another
process even if that process is not terminated yet (this
in contrast with sequential composition). This is useful
for describing mode switches and interrupts/disrupts.

In χ, two operators can be used for the purpose of
describing alternative behaviors; the choice operator
(⊕) and the alternative composition operator ([]). The
choice operator allows choice between different kinds
of continuous behavior of a process, where the choice
depends on the initial state of the continuous-time or
hybrid process. The alternative composition operator
allows choice between different actions/events of a pro-
cess, usually between time-events, state-events or com-
munication events of a discrete-event controller. In such
a case, time-passing should not make a choice. The

choice is delayed until the first action is possible.

A process instantiation, pi(da), where pi refers to a
process definition, and da denotes a comma separated
list of expressions (actual parameters), is used to in-
stantiate process definitions. It is assumed that instan-
tiation is finite and therefore recursive process instan-
tiations are not allowed.

The operators are listed in descending order of their
binding strength as follows {�,→, ; , �, ∗}, {⊕, [], ‖ }.
The operators inside the braces have equal binding
strength. In addition, operators of equal binding
strength associate to the left, and parentheses may be
used to group expressions.

REFERENCES

Alur, R., C. Courcoubetis, N. Halbwachs, T. A. Hen-
zinger, P. H. Ho, X. Nicollin, A. Olivero, J. Sifakis,
and S. Yovine. 1995. The algorithmic analysis of hy-
brid systems. In Theoretical Computer Science, Vol-
ume 138, 3–34. Springer-Verlag.

Alur, R., T. Dang, J. Esposito, Y. Hur, F. Ivancic,
V. Kumar, I. Lee, P. Mishra, G. J. Pappas, and
O. Sokolsky. 2001, Oct. Hierarchical modeling and
analysis of embedded systems. In First Workshop on
Embedded Software EMSOFT’01.

Bos, V., and J. J. T. Kleijn. 2002. Formal specifica-
tion and analysis of industrial systems. Ph. D. thesis,
Eindhoven University of Technology.

Chaochen, Z., W. Ji, and A. P. Ravn. 1996. A formal
description of hybrid systems. In Hybrid Systems III
- Verification and Control, ed. R. Alur, T. A. Hen-
zinger, and E. D. Sonntag, Lecture Notes in Com-
puter Science 1066, 511–530. Springer-Verlag.

Cuijpers, P. J. L., and M. A. Reniers. 2003. Hybrid
process algebra. Technical Report CS-Report 03-07,
Eindhoven University of Technology, Department of
Computer Science, The Netherlands.

Cuijpers, P. J. L., M. A. Reniers, and W. P. M. H.
Heemels. 2002. Hybrid transition systems. Techni-
cal Report CS-Report 02-12, Eindhoven University
of Technology, Department of Computer Science, The
Netherlands.

Fábián, G. 1999. A language and simulator for hybrid
systems. Ph. D. thesis, Eindhoven University of Tech-
nology.

Fábián, G., D. A. van Beek, and J. E. Rooda. 2001. In-
dex reduction and discontinuity handling using sub-
stitute equations. Mathematical and Computer Mod-
elling of Dynamical Systems 7 (2): 173–187.

Gueguen, H., and M. A. Lefebvre. 2001. A compari-
son of mixed specification formalisms. APII JESA
Journal Europeen des Systemes Automatises 35 (4):
381–394.

van Beek, Jansen, Man, Reniers, Rooda and Schiffelers

Henzinger, T. A. 2000a. Masaccio: A formal model for
embedded components. In First IFIP International
Conference on Theoretical Computer Science (TCS),
Lecture Notes in Computer Science 1872, 549–563.
Springer-Verlag.

Henzinger, T. A. 2000b. The theory of hybrid automata.
In Verification of Digital and Hybrid Systems, ed.
M. Inan and R. Kurshan, Volume 170 of NATO ASI
Series F: Computer and Systems Science. New York:
Springer-Verlag.

Jifeng, H. 1994. From CSP to hybrid systems. In A
Classical Mind, Essays in Honour of C.A.R. Hoare,
ed. A. W. Roscoe, 171–189. Prentice Hall.

Johansson, K. H., M. Egerstedt, J. Lygeros, and S. Sas-
try. 1999. On the regularization of zeno hybrid au-
tomata. Systems-&-Control-Letters 38:141–150.

Lynch, N. A., R. Segala, and F. W. Vaandrager. 2003,
Jan. Hybrid I/O automata. Technical Report MIT-
LCS-TR-827d, MIT Laboratory for Computer Sci-
ence, Cambridge, MA 02139. to appear in Informa-
tion and Computation.

Mosterman, P. J., and J. E. Ciolfi. 2002. Embedded
code generation for efficient reinitialization. In 15th
Triennial World Congress of the International Fed-
eration of Automatic Control. CD-ROM.

Schiffelers, R. R. H., D. A. van Beek, K. L. Man, M. A.
Reniers, and J. E. Rooda. 2003a. Formal semantics
of hybrid Chi. In First International Workshop on
Formal Modeling and Analysis of Timed Systems. To
be published.

Schiffelers, R. R. H., D. A. van Beek, K. L. Man, M. A.
Reniers, and J. E. Rooda. 2003b, Jun. A hybrid lan-
guage for modeling, simulation and verification. In
IFAC Conference on Analysis and Design of Hybrid
Systems, ed. S. Engell, H. Guéguen, and J. Zaytoon,
235–240. Saint-Malo, Brittany, France.

van Beek, D. A., and J. E. Rooda. 2000. Languages
and applications in hybrid modelling and simulation:
Positioning of Chi. Control Engineering Practice 8
(1): 81–91.

van Beek, D. A., A. van den Ham, and J. E. Rooda.
2002. Modelling and control of process industry
batch production systems. In 15th Triennial World
Congress of the International Federation of Auto-
matic Control. Barcelona. CD-ROM.

AUTHOR BIOGRAPHIES

D.A. (BERT) VAN BEEK is lecturer at the Sys-
tems Engineering Group at the Eindhoven University
of Technology since 1986. His research interests in-
clude modeling, simulation and verification of hybrid
systems. He is associate editor of Simulation: Transac-
tions of The Society for Modeling and Simulation Inter-

national. He can be reached at <d.a.v.beek@tue.nl>
and at http://se.wtb.tue.nl/~vanbeek.

NIEK G. JANSEN graduated in 2003 in Mechanical
Engineering with respect to the design and formaliza-
tion of the χ language.

KA L. MAN is a Ph.D. research assistant in the De-
partment of Mathematics and Computer Science at the
Eindhoven University of Technology. His research in-
terests focus on formal analysis of hybrid Systems. He
can be reached at <k.l.man@tue.nl>.

MICHEL A. RENIERS is lecturer at the Design
and Analysis of Systems Group from the Department
of Mathematics and Computer Science at the Eind-
hoven University of Technology since 1999. His research
interests include formal methods for the specification,
analysis and verification of timed and hybrid systems.
He can be reached at <M.A.Reniers@tue.nl> and at
http://www.win.tue.nl/~michelr

J.E. (KOOS) ROODA received his Ph.D. degree
from Twente University of Technology, The Nether-
lands. Since 1985 he is full professor of (Manufactur-
ing) Systems Engineering at the Department of Me-
chanical Engineering of Eindhoven University of Tech-
nology. His research fields of interest are modeling
and analysis of manufacturing systems. His interest
is especially in control of manufacturing lines and in
supervisory control of manufacturing machines. He
can be reached at <j.e.rooda@tue.nl> and at http:

//se.wtb.tue.nl/.

RAMON R.H. SCHIFFELERS is a Ph.D. research
assistant in the Department of Mechanical Engineer-
ing at the Eindhoven University of Technology. His
research interests include modeling, simulation and ver-
ification of hybrid systems. He can be reached at
<r.r.h.schiffelers@tue.nl>.

