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The majority of hybrid languages is based on the assumption that discontinuities in differential
variables at discrete events are modeled by explicit mappings. When there are algebraic equations
restricting the allowed new values of the differential variables, explicit remapping of differential
variables forces the modeler to solve the algebraic equations. To overcome this difficulty, hybrid
languages use many different language elements. This paper shows that only one language element
is needed for this purpose: an unknown declaration, that allows the explicit declaration of a
variable as unknown. The syntax and semantics of unknown declarations are discussed. Examples
are given, using the Chi language, in which unknown declarations are used for modeling multi-
body collision, steady-state initialization, and consistent initialization of higher index systems. It
is also illustrated how the declaration of unknowns can help to clarify the structure of the system
of equations, and how it can help the modeler detect structurally singular systems of equations.
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1. INTRODUCTION

Hybrid languages, generally have the following common characteristics. There is
a distinction between ‘discrete’ and ‘continuous’ variables. When differential al-
gebraic equations (DAEs) are used, the continuous variables can be divided into
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differential variables (or state variables), that occur differentiated in the equations,
and algebraic variables, that do not occur differentiated in the equations.

A run of a hybrid model is a alternating sequence of discrete and continuous
phases. In a discrete phase, model time is constant and statements are executed
(or actions/events take place); the values of the discrete variables and the differen-
tial variables can be changed by means of assignments or mappings. In a continuous
phase, model time advances, and the values of the continues variables are deter-
mined by the equations as a function of time. When a time-event or state-event
occurs, the continuous phase terminates, and a discrete phase starts.

Changes in the values of the differential variables in a discrete phase are usually
modeled by means of explicit mappings. This is, however, severely complicated
when there are (temporary) algebraic equations restricting the allowed new values
of the differential variables. There are three types of such algebraic restrictions:

(1) Dependencies between the values of differential variables immediately before
and after a discrete event. Such dependencies can be a result of modeling
physical phenomena using parameter or time scale abstractions [Mosterman
and Biswas 1997; 2002]. An example is a multi-body collision that is modeled
to take place at a specific time-point (see Section 6.1).

(2) Additional instantaneous equations that limit the number of dynamic degrees
of freedom (see Section 2.1) of the equation system. This is the case for steady
state initialization, where ẋ = 0. Instantaneous equations are equations that
are valid only at certain discrete-event time points (see Section 6.2).

(3) Dependencies between differential variables x. Such dependencies may be in
the form of g(x) = 0, or in the somewhat more general form of: g(x,y) = 0,
such that ∂g/∂y is singular, where y denotes the algebraic variables. This is
the case in higher index systems (see Section 7).

Many different language elements are used in hybrid languages to deal with the
different algebraic restrictions on differential variables. This paper aims to show
that, in addition to conditional and instantaneous equations, only one language
element is needed for this purpose. The proposed language element is an unknown
declaration, that allows the explicit declaration of a variable as unknown.

The paper continues with an introduction to DAEs. The solution of a DAE
system is divided into the consistent initialization problem and the initial value
problem, which are defined in terms of the equations, unknowns, and knowns.
Then, hybrid languages are discussed. The syntax and semantics of the proposed
unknown declarations are treated in a general way, and more specifically for the χ
(or Chi) language. Subsequently, the use of unknown declarations is illustrated for
modeling of colliding bodies, and for steady-state initialization. Finally, the use of
unknown declarations in the context of higher index systems is discussed. A PD
controller and the well known pendulum are treated as examples.

2. BACKGROUND ON DAES

Consider the following general representation of a DAE that is considered on an
interval starting at t = t0

f(ẋ(t),x(t),y(t), t) = 0, (1)
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where ẋ : R → R
n denotes the n derivatives ẋ0 . . . ẋn−1; x : R → R

n denotes the
n differential variables x0 . . . xn−1; y : R → R

m denotes the m algebraic variables
y0 . . . ym−1; t ∈ R denotes the time, and f : R

n × R
n × R

m × R → R
n+m denotes

the set of n + m equations. Mathematically, the solution of DAEs can be divided
into two sub-problems that are solved sequentially: the consistent initialization
problem [Pantelides 1988], which aims at solving the equations at a certain point
of time t = t0; and the initial value problem, which aims at solving the equations
for t ≥ t0, using the solution of the consistent initialization problem as the starting
point [Brown et al. 1998]. In this paper, the consistent initialization problem is
abbreviated as IP; the initial value problem is abbreviated as IVP.

2.1 The IP

The IP can be defined as follows: given information on the initial state ẋ(t0),
x(t0), y(t0) that is sufficient, in a mathematical sense, to find a unique solution
(at least locally) to Equation (1) on an interval starting at t = t0, determine
the complete initial state ẋ(t0), x(t0), y(t0) corresponding to this unique solution
[Brenan et al. 1996]. The values ẋ(t0), x(t0), y(t0) are referred to as the consistent
initial conditions.

The initial conditions ẋ(t0),x(t0),y(t0) must satisfy

f(ẋ(t0),x(t0),y(t0), t0) = 0. (2)

This is, however, not always enough for consistency of the initial conditions. For
certain systems of equations, differentiating a subset of the equations defined by
(1) leads to additional equations, also called the hidden constraints, that must also
be satisfied by the initial conditions [Pantelides 1988].

The number of (dynamic) degrees of freedom r of a set of n + m equations (1),
is the number of initial conditions from the 2n + m initial conditions ẋ(t0), x(t0),
y(t0) (or: ẋ0(t0), . . . , ẋn−1(t0), x0(t0), . . . , xn−1(t0), y0(t0), . . . , ym−1(t0)) that can
be arbitrarily specified and still allow consistent initialization [Unger et al. 1995].
When there are no hidden constraints, the number of dynamic degrees of freedom
is n. Hidden constraints lead to r < n.

2.2 The IVP

Given the equation

f(ẋ(t),x(t),y(t), t) = 0, (3)

determine x(t),y(t) on an interval starting at t = t0 for given consistent initial
conditions ẋ(t0), x(t0), y(t0).

2.3 Unknowns in the IP

In this section, the IP is further discussed for equations that do not require addi-
tional differentiation in order to allow consistent initial conditions to be determined
(see Section 7). The variables that occur in the equations of the IP are divided into
two categories: the unknown and the known variables. In the IP, the values of
the unknown variables are determined as a function of the values of the known
variables. Therefore, the values of the known variables are not affected by solv-
ing the IP. A frequently occurring IP is given by considering x(t0) as known, and
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ẋ(t0),y(t0) as unknown in (2). For ODEs (ordinary differential equations)

ẋ(t) = f(x(t), t), (4)

this IP is trivial: the value of ẋ(t0) can be calculated by assigning f(x(t0), t0) to
ẋ(t0). For DAEs, numerical solvers may be needed to solve (2) for ẋ(t0),y(t0).

In hybrid systems, the IP may need to be solved in the following situations:

—After the differential variables are initialized for the first time, usually at time
zero.

—At discrete events, after changing to a different set of equations and/or unknowns,
or after a change in the values of one or more of the known variables in the
equations.

The fact that the value of x(t0) remains unchanged when the IP is solved for ẋ(t0)
and y(t0), is sometimes referred to as the ‘continuity assumption’ for x.

Changes in the equations can require changes in the knowns and unknowns for
the IP. Consider the single equation

ẋ = 1 (5)

with one degree of freedom, and x as known variable and ẋ as unknown. If this
equation is changed at a discrete event into

x = 1, (6)

the equation can only be solved for x. Therefore, x becomes unknown, and there
are no longer any known variables; the number of degrees of freedom is reduced
from one to zero.

In Equations (5) and (6), there is only one way to define a solvable IP. For
equation

ẋ = −x + 1

however, x may be considered known or unknown. The latter case could occur when
steady-state conditions are determined. For steady-state conditions, an additional
equation defines the value of ẋ to be 0:

ẋ = −x + 1
ẋ = 0.

In the resulting new IP, x changes from a known to an unknown variable. Its value
is then determined by the equations (and equals 1). The steady-state IP is specified
in a general way by

f(ẋ(t0),x(t0),y(t0), t0) = 0 (7a)
ẋ(t0) = 0, (7b)

with unknowns ẋ(t0), x(t0), and y(t0). The number of dynamic degrees of freedom
is zero.
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2.4 Unknowns in the IVP

The variables that occur in the equations of the IVP are divided into two categories:
the unknown and the known variables. In the IVP, the values of the unknown
variables are determined as a function of the consistent initial conditions, the time,
and the known variables; the values of the known variables are not affected by
solving the IVP. The set of unknown variables for the IVP is usually different from
the set of unknown variables for the IP for two reasons: first, differential variables
(occurring in the active equations) are always unknown in the IVP, but they can
be known in the IP; second, derivatives (occurring in the active equations) are
considered as unknown variables for the IP, whereas for the IVP, they are not
separate variables, and therefore they are not in the set of unknowns for the IVP.

2.5 Example

Consider a tank containing a volume V of liquid, an inlet feeding a flow of 2, and
an outlet with a flow Q. The model of the tank system is:

V̇ (t) = 2−Q(t)

Q(t) =
√

V (t).

If at time 0, the volume of the tank V (0) is considered as known, the IP is
specified by:

V̇ (0) = 2−Q(0)

Q(0) =
√

V (0),

with V̇ (0) and Q(0) as unknowns. When V (0) = 9, then Q(0) = 3 and V̇ (0) = −1.
In the case of steady-state initialization, the IP becomes:

V̇ (0) = 2−Q(0)

Q(0) =
√

V (0)
V̇ (0) = 0,

where V̇ (0), V (0), and Q(0) are the unknowns. This leads to the consistent initial
conditions V̇ (0) = 0, Q(0) = 2, and V (0) = 4.

For the IVP of the same system, the unknowns are V (t) and Q(t):

V̇ (t) = 2−Q(t)

Q(t) =
√

V (t)

where V̇ denotes the derivative function of V .

3. UNKNOWNS IN HYBRID LANGUAGES

An introduction to the functionality of different hybrid languages can be found in
[Mosterman 1999; Gueguen and Lefebvre 2001; van Beek and Rooda 2000]. The
distinction between discrete and continuous variables, that is usually present in
hybrid languages, may be made in the type of the variables [IEEE 1999], but also
in the place where they are used (e.g. Tasks versus Modules in gPROMS [Barton
and Pantelides 1994]). In hybrid automata [Alur et al. 1995], discrete variables may
be referred to as ‘locations’. In hybrid languages, continuous variables are unknown
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in the IVP; discrete variables are known in the IVP and usually also known in the
IP. There are, however, languages, such as Modelica [Mattsson et al. 1998], that
use equations to determine the values of discrete variables.

The majority of hybrid languages is based on the assumption that discontinuities
in differential variables at discrete events are modeled by explicit mappings. An
example of such languages are formal languages, such as hybrid automata [Alur
et al. 1995] or Petri nets [David and Alla 2001]. The equations considered are
usually of the form ẋ = f(x, t),y = g(x, t). This implies that the differential
variables can be independently initialized. The unknowns and knowns for the IP
are fixed with x considered known, and ẋ,y considered unknown. When there are
algebraic equations restricting the allowed new values of the differential variables
(see Section 1), explicit remapping of differential variables forces the modeler to
solve the algebraic equations. To overcome this difficulty, many different language
elements are used in hybrid languages to deal with the different types of algebraic
restrictions on differential variables, see for example [Barton and Pantelides 1994;
IEEE 1999; Mattsson et al. 1998]. There are languages that have language elements
to denote the value of a differential variable before and/or after a discrete event, such
as old( var)/new( var), or var−/var+, where var denotes a (differential) variable.
These expressions can then be used in instantaneous equations that specify the
relations between the values of differential variables before and after a discrete
event.

Another type of dependency between differential variables occurs at steady-state
initialization. In steady-state initialization, the differential variables, which are
usually known for the IP, temporarily become unknown. Some simulation languages
( e.g. [IEEE 1999]) start by default with the steady-state IP as specified in Equation
(7), with ẋ(t0), x(t0), y(t0) unknown. In other simulation languages, the unknowns
ẋ(t0), y(t0) in the first IP, when the system is first initialized, are no different
from the unknowns in subsequent IPs. Usually, additional language elements are
available in simulation languages to change from steady-state initialization to non-
steady-state initialization. The instantaneous steady state equations (ẋ = 0) are
usually not explicitly modeled. Instead, special purpose language elements are
used. Also additional language elements may be available to allow the temporary
addition of equations to the IP, and to specify which differential variables become
unknown as a result. In the case that equations are removed from the system, the
associated continuous variables may be specified as undefined [Barton 1992].

4. A LANGUAGE ELEMENT FOR THE DECLARATION OF UNKNOWNS

The different types of dependencies between differential variables can be modeled
by means of a single language element for the declaration of unknowns. Using
unknown declarations, it is no longer necessary to introduce a static separation
between discrete and continuous variables. Unknown declarations consist of a list of
unknowns between bars, which can be declared wherever equations can be declared.
An unknown is either a variable or a derivative of type real, or based on type real
(tuples, records, arrays of reals), optionally postfixed with a prime character to
denote a derivative. Not all unknowns need to be explicitly declared as unknown
in an unknown declaration.
ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, January 2003.
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For the IVP, the differential variables — that is the variables that occur differen-
tiated in the active equations (see Section 5.3) — are by definition unknown. The
reason for this is that in differential (algebraic) equations, the differential variables
always need to be solved as a function of time. The derivatives that occur in the
active equations are not considered as separate variables. Instead, the dot opera-
tor in ẋ is considered to transform the function x into its derivative function—so
that in ẋ, the unknown is x. Therefore, declarations of derivatives as unknown are
disregarded for the IVP.

For the IP, the derivatives that occur in the active equations are by definition
unknown. There are two reasons for this. First, a derivative that would be allowed
to be known would behave as a variable and could be assigned a value. This is
inconsistent with the fact that derivatives are not considered as separate variables
in the IVP. Second, modeling becomes easier when the modeler needs not explicitly
declare all derivatives as unknown. We have not found any realistic models that
would benefit from allowing derivatives to be known.

4.1 Informal semantics

A run of a hybrid model is an alternating sequence of discrete and continuous
phases. In both phases, there is a set of unknowns. The variables and derivatives
that are in the set of unknowns are considered unknown for the IP or IVP; all other
variables are considered known. The value of a known variable is determined by a
mapping. The value of an unknown is determined by an IP or IVP.

In a discrete phase, model time is constant and statements are executed (or ac-
tions/events take place). The active equations and the set of unknowns define an
IP that defines the values of the unknowns as a function of the knowns. When
no further statements can be executed without advancing model time, the discrete
phase terminates and a continuous phase starts. In a continuous phase, the ac-
tive equations and the set of unknowns define an IVP, which defines the values of
the unknowns as a function of the consistent initial conditions, the time, and the
knowns. When a time-event or state-event occurs, the continuous phase terminates,
and a discrete phase starts.

The set of unknowns for the IP contains the derivatives that occur in the active
equations, together with the variables that are explicitly declared as unknown in the
active unknown declarations (see Section 5.3). The value of an unknown needs to
be defined only when the value is actually required in an expression of an executing
statement.

The set of unknowns for the IVP contains the variables that occur differentiated in
the active equations (the differential variables), together with the variables that are
explicitly declared as unknown in the active unknown declarations. Only algebraic
variables need to be explicitly declared as unknown for the IVP, since the differential
variables are by definition in the set of unknowns.

When a variable changes from unknown to known, its value changes from being
determined by an IP or IVP, to being determined by a mapping. The value defined
by the mapping is the value of the variable that was defined by the IP or IVP,
just before the variable switched from unknown to known. Such a switch usually
takes place for differential variables, when a continuous phase switches to a discrete
phase, which implies a switch from an IVP to an IP. The differential variables then
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usually switch from unknown to known, because they are by definition unknown in
IVPs, whereas they are usually known in IPs. The removal of temporary additional
equations, that determine the values of differential variables, can also lead to such
a phenomenon. Examples are bodies colliding at a single point of time and steady-
state initialization (see sections 6.1 and 6.2).

The switch from a discrete phase to a continuous phase cannot cause variables to
switch from unknown to known. However, the consistent initial conditions of the
IVP (ẋ(t0), x(t0), y(t0) in Section 2.2) are defined to be the values that are deter-
mined by the preceding IP at the time point of the switch to the IVP. Therefore,
the starting values of the unknowns in the IVP are in fact considered known.

Declaring a derivative as unknown in an unknown declaration has no effect on
the set of unknowns for the IP or IVP, and therefore does not change the semantics
of the model. Derivatives occurring in active equations may, however, be explicitly
declared as unknown to clarify the structure of the system of equations. This may
help the modeler to detect structurally singular systems of equations (see Section
7).

5. THE χ LANGUAGE

Unknown declarations will be implemented in the newest version of the χ language.
An older version of the language is discussed in [van Beek and Rooda 2000]. The χ
language has been designed from the start as a hybrid language that can be used for
specification, verification [Bos and Kleijn 2000a; 2002], simulation, and real-time
control [Hofkamp 2001] of discrete-event systems [van de Mortel-Fronczak et al.
1995], continuous-time systems, and combined discrete-event / continuous-time sys-
tems [van Beek and Rooda 2000]. The language is based on mathematical concepts
with well defined semantics [Bos and Kleijn 2000b; 2002]. The discrete-event part
of χ is based on Communicating Sequential Processes [Hoare 1978], the continuous-
time part on differential algebraic equations. Processes are parameterized and can
be grouped into systems; channels and shared variables are used for inter-process
communication and synchronization. High level data types are available such as
arrays, lists and sets along with many associated operators.

The χ simulator is described in [Fábián 1999] and [Naumoski and Alberts 1998].
It has been successfully applied to a large number of industrial cases, such as an
integrated circuit manufacturing plant [Rulkens et al. 1998], a brewery [van Beek
et al. 2002], and a fruit juice blending and packaging plant [Fey 2000]. In the
sequel, only a minimal subset of the χ language is used. The syntax and operational
semantics of the language constructs are explained in an informal way. The models
are kept as short as possible, showing only the essentials.

5.1 Process and system syntax

A process may consist of a variable declaration part, a continuous-time part (differ-
ential algebraic equations), a discrete-event part (statements), or any combination
of the different parts. The syntax of a process consisting of all parts is:

proc name(parameter declarations) =
|[ variable declarations
| equations
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| statements
]|

A system may consist of a variable and channel declaration part, and a process
instantiation part. Process instantiations are separated by the parallel symbol ‘||’:

syst name(parameter declarations) =
|[ variable and channel declarations
| process instantiations
]|

5.2 Equation syntax

A somewhat simplified syntax of equations in χ follows below. The syntax is de-
scribed in extended BNF where {X } denotes zero or more repetitions of construct
X, and [X ] denotes zero or one occurrence of construct X. Literal characters are
enclosed in quotes.

derivative ::= variable primechar

unknown ::= variable | derivative

unknownDecl ::= ’|’ unknown {, unknown} ’|’

guardedEq ::= ’[’ b ’->’ UEq ’]’

UEq ::= unknownDecl

| guardedEq

| re ’=’ re

| UEq, UEq

where b denotes a boolean expression; re denotes an expression of type real
(or based on real), primechar denotes the prime character, guardedEq denotes
a guarded equation, and UEq denotes unknown declarations and/or equations. A
guarded (or in other words conditional) equation consists of one or more equations
or unknown declarations that are prefixed by a boolean expression, called a guard,
as in [b -> x = 1]. The arrow ‘->’ separates the guard from the equation(s). A
guard is open when its value evaluates to true and is closed otherwise.

5.3 Active equations and active unknown declarations

When the equations of a model are solved, only the active equations and the active
unknown declarations are taken into account. The active equations (and unknown
declarations) are the unguarded equations (and unguarded unknown declarations)
together with those guarded equations (and unknown declarations) that have an
open guard (value of guard is true).

6. EXAMPLES

The semantics is illustrated by means of the following example. The equation part
is separated from the declaration part by the symbol |, and comments are prefixed
by //:

proc P =

|[ V: real:= 0.0

, x: real:= 0.0

, Q: real
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, b: bool:= true

| |Q|

, V’ = 2 - Q

, Q = sqrt (V)

, [ b -> x’ = 1 - x ]

, [ not b -> |x|, x = 2 ]

]|

Variables V , x, and Q are declared as reals. Function sqrt represents the square
root function. Variable b is a boolean variable, that is initialized to true. When b is
true, the set of active equations consist of equations V ′ = 2−Q, Q =

√
V , x′ = 1−x.

The unknowns for the IP are then V ′, x′ (by definition), and Q (explicitly declared
as unknown). This means that the values of V and x remain unchanged when the
consistent initial conditions are determined by solving the IP. The unknowns for
the IVP are V , x (by definition), and Q (explicitly declared as unknown).

When boolean variable b is false, the set of active equations consist of Equations
V ′ = 2−Q, Q =

√
V , x = 2. Variable x is now an algebraic variable. The unknowns

for the IP are V ′, Q, and x. The unknowns for the IVP are V , Q, and x.

6.1 Modeling colliding bodies

Consider a body of mass m0 and velocity v0, with applied force 1, moving towards
another body of mass m1 and velocity v1, and colliding with that body. The
positions of the bodies are denoted by x0 and x1, respectively. Variables vold0 and
vold1 denote the velocities of the two bodies just before the collision. The model
follows below.

type pos = real // position

, vel = real // velocity

, mass = real

proc C0(m0,m1: mass, e: real) =

|[ x0: pos := 0.0

, x1: pos := 1.0

, v0: vel := 0.0

, v1: vel := 0.0

, vold0,vold1: vel

| x0’ = v0, v0’ = 1.0

, x1’ = v1, v1’ = 0.0

| *[ true

-> nabla x0 >= x1; vold0:= v0; vold1:= v1

; { |v0,v1|

, v0 - v1 = -e * (vold0 - vold1)

, m0*v0 + m1*v1 = m0*vold0 + m1*vold1

}

; nabla x0 < x1

]

]|

In the declaration part of the specification, the positions of the bodies are ini-
tialized to 0 and 1, respectively; the velocities are initialized to 0. The meaning of
nabla x0 ≥ x1, as the first statement of the infinite repetition *[true -> ...], is
ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, January 2003.
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that the process waits until the value of expression x0 ≥ x1 becomes true. This is
the case when the collision occurs. Subsequently, vold0 and vold1 are set to v0 and
v1, respectively. The following statement to be executed is an instantaneous set of
unknown declarations and equations {|v0, v1|, · · · }. Unknown declaration |v0, v1|
defines variables v0 and v1 as unknown; the first equation, v0−v1 = −e(vold0−vold1),
relates the differences in the velocities before and after the collision as a function of
the restitution coefficient e ∈ [0, 1]; the second equation specifies the conservation of
momentum. The semantics is that the unknowns v0 and v1 are added to the set of
unknowns, the two instantaneous equations are added to the active equations, and
the IP is solved for the unknowns. The two instantaneous equations define v0 and
v1 as functions of vold0, vold1, m0, m1, and e. After execution of the instantaneous
equation statement, variables v0 and v1 ( and x′

0, x′
1, since x′

0 = v0, x′
1 = v1) have

the values that reflects the state directly after the collision; v0 and v1 change from
unknown into known variables again (for the IP), and the two additional equations
are no longer in the set of active equations. A functionally equivalent specification
of the colliding objects in which no instantaneous equations are used is:

proc C1(m0,m1: mass, e: real) =

|[ x0: pos = 0.0

, x1: pos = 1.0

, v0: vel = 0.0

, v1: vel = 0.0

, vold0,vold1: vel

| x0’ = v0, v0’ = 1.0

, x1’ = v1, v1’ = 0.0

| *[ true

-> nabla x0 >= x1; vold0:= v0; vold1:= v1

; v0 := (m0*vold0 - e*m1*vold0

+m1*vold1 + e*m1*vold1)/(m0 + m1)

; v1 := (m0*vold0 + e*m0*vold0

-e*m0*vold1 + m1*vold1)/(m0 + m1)

; nabla x0 < x1

]

]|

A first disadvantage of this model is that the modeler is forced to calculate the
new values for v0 and v1 directly after the collision as explicit functions of vold0,
vold1, m0, m1, and e. A second disadvantage is that the model no longer reflects
the physical laws that are valid at the point of collision.

6.2 Steady-state initialization

Consider a slightly modified version of the tank system from Section 2.5. Process
T has an incoming flow Qi and an outgoing flow Qo:

proc T( ref steady: bool

, ref Qi,Qo: real

) =

|[ V: real

| [ steady -> |V|, V’ = 0 ]

, |Qo|
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Q 0

Q 1

Q 2

T

T

Fig. 1. A two tank system.

, V’ = Qi - Qo,

, Qo = sqrt(V)

]|

Boolean variable steady is true when steady-state initialization is used; it is false
when the value of differential variable V should be unaffected by solving the IP.
The keyword ref can be prefixed to a process parameter. The meaning is that such
a parameter is a shared variable, that can be used in more than one process.

If boolean variable steady is true, the active equations and active unknown dec-
larations are equivalent to:

|V, Qo|, V ′ = 0, V ′ = Qi −Qo, Qo =
√

V

with unknowns for the IP: V ′ (by definition), V , and Qo (declared unknown explic-
itly).

If boolean variable steady is false, the active equations and unknown declarations
are equivalent to:

|Qo|, V ′ = Qi −Qo, Qo =
√

V

with V ′ and Qo unknown for the IP, and V known for the IP, so that the value of
differential variable V remains unchanged when the IP is solved.

Figure 1 shows two tanks that are connected in such a way that the outgoing
flow of the first tank is connected to the incoming flow of the second tank. System
TwoTanks, specified below, is a model of the two connected tanks. Two tank
processes are instantiated in such a way that the outgoing flow of the first tank
process T is connected to the incoming flow of the second process T . Variables
Q0, Q1, Q2 are defined as variables in the system. They are shared between the
two tank process instantiations T (· · · ). Process Source defines the value of Q0 to
be 2. Local variable steady is declared as being initially true, so that the system
is initialized in steady state. Variable steady is shared with process Ini . In this
process, the value of the variable is set to false, so that the additional steady state
equations |V |, V ′ = 0 are made inactive. First, the initialization to true at the
declaration of variable steady in system TwoTanks is executed. As a result, the
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values of Q0, Q1, Q2, V0, V1 will be 2, 2, 2, 4, 4, respectively. After that, the
assignment of false to variable steady in process Ini is executed.

proc Source(ref Q: real) =

|[ |Q|, Q = 2 ]|

proc Ini(ref steady: bool) =

|[ steady:= false ]|

syst TwoTanks() =

|[ steady: bool:= true

, Q0,Q1,Q2: real

| Source(Q0) || Ini(steady)

|| T(steady, Q0, Q1)

|| T(steady, Q1, Q2)

]|

7. HIGHER INDEX SYSTEMS

Most hybrid simulation languages cannot deal with higher index systems. Unfor-
tunately, many models of physical systems are of a higher index. In this section,
first the higher index problem is explained; it is related to dependencies between
differential variables. Second, it is explained that unknown declarations can help
to deal with higher index systems in two ways:

(1) Unknown declarations enable the modeler to partition the differential variables
into dependent and independent variables by choosing the dependent differen-
tial variables and declaring them as unknown. The remaining (independent)
differential variables can then be freely initialized by the modeler. The simula-
tor can calculate the values of the dependent variables.

(2) Unknown declarations can be used to clarify the structure of a system of equa-
tions. This can be done by prefixing unknown declarations to equations. In
this way, the modeler can detect higher index systems. Together with system-
atic modeling techniques, this may enable the modeler to keep the index of the
model equations low.

In the previous sections, the assumption was made that initial conditions ẋ(t0),
x(t0), y(t0) are consistent if they satisfy Equation (2). For higher index systems,
initial conditions need also satisfy the hidden constraints, that are obtained after
differentiation of Equation (1). The need to differentiate (a subset of) the system
of equations in order to determine the consistent initial conditions is related to the
index of the system of equations. In general, the higher the index, the greater the
numerical difficulty that is encountered when trying to solve the system numerically.
Several index definitions exist. In most cases, the differential index [Gear 1988] is
used. This index is rather straightforward to determine, due to its constructive
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definition. Consider the system of equations

f(ẋ,x,y, t) = 0 (8a)
d

dt
f(ẋ,x,y, t) = 0 (8b)

...
dj

dtj
f(ẋ,x,y, t) = 0, (8c)

where Equation (8a) is as defined in the beginning of Section 2. This system can
be written as

f0(ẋ,x,y, t) = 0 (9a)
f1(ẍ, ẏ, ẋ,x,y, t) = 0 (9b)

...
fj(x(j+1),y(j), . . . ẍ, ẏ, ẋ,x,y, t) = 0. (9c)

For the determination of the differential index of (8a), the variables x(j+1), y(j),
. . . ẍ, ẏ, ẋ are treated as purely algebraic variables, depending on x, y, and t. The
differential index is then defined as the smallest value of j for which system (9)
uniquely defines [ẋ ẏ]T as a function of x, y, and t.

Systems of equations that have an index greater than one are called higher index
systems. A common feature of higher index systems is the presence of hidden
constraints, that further restrict the initial conditions that satisfy (8a). The hidden
constraints can be obtained by differentiation of (a subset of) the equations and
subsequent algebraic manipulations [Gear 1988; Pantelides 1988]. Consider

ẋ = y (10a)
x = 1. (10b)

The differential index is 2. Differentiation of x = 1 leads to ẋ = 0, which leads to
y = 0. A second differentiation leads to ẏ = 0, so that after two differentiations
the ODE ẋ = 0, ẏ = 0 is obtained. Initial conditions that satisfy Equations (10)
are ẋ(t0) = y(t0) = x(t0) = 1. These initial conditions, however, do not satisfy
the hidden constraint ẋ = 0, which is obtained after differentiation. Therefore,
consistent initial conditions need to satisfy

ẋ = y

x = 1
ẋ = 0,

and are ẋ(t0) = y(t0) = 0, and x(t0) = 1. Even DAEs of (differential) index
one may require differentiation in order to reveal hidden constraints, and to allow
consistent initialization. Consider

ẋ0 = ẋ1 (11a)
x0 = 1. (11b)
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Initial conditions that satisfy Equations (11) are ẋ0(t0) = ẋ1(t0) = x0(t0) = 1, and
x1(t0) = 0. These initial conditions, however, do not satisfy the hidden constraint
ẋ0 = 0, which is obtained after differentiation. Consistent initial conditions need
to satisfy

ẋ0 = ẋ1

x0 = 1
ẋ0 = 0,

and are ẋ0(t0) = ẋ1(t0) = 0, x0(t0) = 1, and x1(t0) = 0. The system has one
dynamic degree of freedom: x1(t0) can be given an arbitrary initial value. The
differential index, however, is one, since differentiation of x0 = 1 leads to the ODE
ẋ0 = 0, ẋ1 = 0.

For the determination of consistent initial conditions it is more relevant to con-
sider the smallest value of j for which system (9) uniquely (at least locally) defines
[ẋ y]T as a function of x, and t. This value of j is the number of times that the
original DAE (8a) needs to be differentiated in order to be able to determine the
consistent initial conditions. If a DAE

f(ẋ,x,y, t) = 0

uniquely (at least locally) defines [ẋ y]Tas a function of x and t, the DAE does
not contain hidden constraints. This is the case if and only if ∂f/∂z is nonsingu-
lar, where z = [ẋ y]T. The initial value x(t0) of such a DAE can be arbitrarily
chosen; consistent initial conditions ẋ(t0),x(t0),y(t0) need only satisfy the orig-
inal equations. This can be seen as follows: differentiation of the function that
uniquely defines [ẋ y]T as a function of x and t, yields a function that defines
[ẍ ẏ]T as a function of ẋ, x, and t. Therefore, for every set of initial conditions
ẋ(t0),x(t0),y(t0), t0 that satisfy the original equation, values of ẍ(t0) and ẏ(t0) can
be chosen that satisfy the additional equations.

7.1 Structural analysis

Another way of analyzing the properties of systems of equations is by means of
structural analysis. Structural analysis distinguishes only zero and nonzero values
[Unger et al. 1995]; only the presence of variables in equations is taken into account,
not the numerical value of the corresponding coefficients in the Jacobian matrix.
Structural analysis of equations is, in general, a more efficient way to detect higher
index systems than numerical analysis of the Jacobian matrix. The Pantelides algo-
rithm [Pantelides 1988], that is based on structural analysis, identifies the minimal
subset of equations that must be differentiated for the determination of consistent
initial conditions. Pantelides shows that DAEs that are structurally singular with
respect to [ẋ y]T require differentiation of the equations in order to reveal the hidden
constraints. A system of equations is defined as structurally singular with respect
to a certain set of variables if it contains a subset of equations that is structurally
singular with respect to the same set of variables. A subset of equations is called
structurally singular with respect to a set of variables if the number of these vari-
ables that occur in the equation subset is smaller than the number of equations in
the subset. The Pantelides algorithm tries to assign each of the variables of [ẋ y]T
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to a different equation. If this is possible, the system of equations is structurally
regular. If this is not possible, the algorithm finds the equations that need to be
differentiated in order to enable consistent initialization. Structural regularity of
equations with respect to [ẋ y]T is a necessary, but not sufficient, requirement to
allow consistent initialization without differentiation. The reason for this is that a
system that is structurally regular may still have a singular Jacobian matrix. Only
few simulation languages actually provide structural analysis and automatic index
reduction by means of differentiation in order to reduce the index and allow consis-
tent initialization. The Dymola [Elmqvist et al. 2000] simulation language is one of
them. ABACUSS I [Feehery and Barton 1996] did provide this feature, using the
dummy derivative method [Mattsson and Söderlind 1993], but the feature is not
available in its successor ABACUSS II [Clabaugh 2001]. For the many simulation
languages that do not provide automatic index reduction, the modeler needs to do
structural analysis and index reduction him/herself, and/or use systematic mod-
eling techniques that keep the index low. Such a technique is described in [Moe
1995]. A key element of this technique is the assignment of the variables of [ẋ y]T

to the equations. The chosen assignment of variables to equations is essentially a
bookkeeping method; it is not part of the model. The chosen assignments could be
informally indicated by means of comments to the model.

7.2 Declaration of unknowns

Using the proposed language element for the declaration of unknowns, the chosen
assignment of variables to equations can be made part of the model. For this pur-
pose, consider that the variables represented by y in Equation (1) are algebraic
variables, which do not occur differentiated in the equations. Therefore, they need
to be declared as unknown. The variables represented by ẋ can be explicitly de-
clared as unknown without changing the semantics of the model (see Section 4.1).
An unknown declaration can be put on the same line as an equation in which the
unknown occurs. This is interpreted as ‘assigning’ the unknown to the equation.
The exact location where variables are declared as unknown has no effect on the
semantics of the model, unless they are declared as part of a guarded equation.
In such a case, it depends on the state of the guards whether or not the unknown
declaration is active. By using unknown declarations to assign the derivatives rep-
resented by ẋ and the algebraic variables represented by y to equations in which
they occur, the assignment of these variables becomes part of the model. This
has the advantage that the structure of the model is clarified, systematic model-
ing techniques are facilitated, and structural singularities—which lead to higher
index systems—can be made visible. Even in the case of automatic index reduc-
tion by simulation languages, the modeler needs to be able to indicate which of
the differential variables are explicitly given independent initial values, and which
of the differential variables are considered dependent. This is necessary because
the differential variables can no longer be initialized independently in higher index
systems. The differential variables that are considered dependent can be indicated
by declaring them unknown in an unknown declaration.
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7.3 PD controller example

The examples show how unknown declarations can be used to assign each derivative
and algebraic variable to a unique equation. If this is not possible, structural
singularities can be identified. As an example of a higher index system, consider
the following PD (proportional differential) controller. A horizontal force F is
applied to a body of mass 1 on a flat surface, without friction. The position and
velocity of the body are denoted by x, and v, respectively. The control objective is
to keep the body at a given position xset. The control error and the control output
are denoted by e and u, respectively. The model is:

type pos = real

, vel = real

, force = real

proc PID0( kP,kD: real, xset: pos

, Fin: real -> force

)=

|[ x: pos:= 0.0

, e: pos:= x - xset

, v: vel:= 0.0

, F: force, u: real

| |u,F|,

, x’ = v

, v’ = F - u

, e = x - xset

, u = kP * e + kD * e’

, F = Fin(time)

]|

where time denotes the current time of the model, kP, kD are parameters, and
parameter Fin denotes a function from a real (the time) to a force. The derivatives
(x′, v′, e′) are unknown for the IP by definition. The algebraic variables u and F are
explicitly declared as unknown at the start of the equation set. When initializing
e, a problem appears: e is a differential variable, but its value cannot be initialized
independently from x. By explicitly declaring the derivatives and algebraic variables
as unknown and prefixing them to the equations in which they occur, the structural
singularity becomes apparent: the derivatives and algebraic variables cannot each
be assigned to a unique equation; the system is an index 2 system, and consistent
initialization is only possible after differentiation of equation e = x− xset:

proc PID1( kP,kD: real, xset: pos

, Fin: real -> force

)=

|[ x: pos:= 0.0, e: pos:= x - xset

, v: vel:= 0.0

, F: force, u: real

| |x’|, x’ = v

, |v’|, v’ = F - u

, e = x - xset // Struct. singularity

, |e’,u|, u = kP * e + kD * e’
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, |F|, F = Fin(time)

]|

The index can be reduced from 2 to 1 by differentiation of equation e = x−xset,
which leads to e′ = x′. By substitution of e′ by x′, the following index 1 system is
obtained:

proc PID2( kP,kD: real, xset: pos

, Fin: real -> force

)=

|[ x: pos:= 0.0, e: pos

, v: vel:= 0.0

, F: force, u: real

| |x’|, x’ = v

, |v’|, v’ = F - u

, |e|, e = x - xset

, |u|, u = kP * e + kD * x’

, |F|, F = Fin(time)

]|

Variable e is now an algebraic variable. The equation for u, however, no longer
looks like the control law of a PD controller, since x′ is used instead of e′. By using
a substitute equation [Fábián et al. 2001] for e′, the original equation for u needs
not be changed. The meaning of substitute equation e′ ← x′ is that every time the
value of the variable on the left hand side (e′) is used in the model, the value of
the right hand side expression (x′) is used instead. For the simulator, the model
thus appears the same as the previous model, in which the modeler performed the
substitution of e′ by x′; variable e behaves as an algebraic variable. The advantage
of using a substitute equation is that the equations of the original model remain
unchanged. The resulting model is an index 1 model:

proc PID3( kP,kD: real, xset: pos

, Fin: real -> force

)=

|[ x: pos:= 0.0, e: pos

, v: vel:= 0.0

, F: force, u: real

| |x’|, x’ = v

, |v’|, v’ = F - u

, |e|, e = x - xset

, |u|, u = kP * e + kD * e’

, |F|, F = Fin(time)

, e’ <- x’ // substitute e’ by x’

]|

If the simulator would perform automatic index reduction by means of differen-
tiation, the modeler would still need to indicate which one of the variables e and
x becomes unknown, and which one is given an independent initial value. In the
model below, e is chosen as the unknown, and x is initialized:

proc PID4( kP,kD: real, xset: pos

, Fin: real -> force
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)=

|[ x: pos:= 0.0, e: pos

, v: vel:= 0.0

, F: force, u: real

| |e|,

, |x’|, x’ = v

, |v’|, v’ = F - u

, e = x - xset

, |u,e’|, u = kP * e + kD * e’

, |F|, F = Fin(time)

]|

In this model, e is declared unknown at the top of the system of equations; it is
not assigned to any equation. This is because the purpose of assigning unknown
declarations is to detect structural singularities of a system of equations with respect
to the derivatives and algebraic variables x′, v′, e′, u, F . Since e is a differential
variable, it should not be assigned to an equation. However, it (or x) must be
declared unknown, because one of the two differential variables can be assigned
an initial value; the other differential value is then unknown, so that its value is
determined by the equations (in this case e = x − xset). The simulator could use
the Pantelides algorithm to determine that equation e = x − xset is the smallest
singular subset of equations with respect to the differential and algebraic variables.
The simulator should then derive the additional equation (hidden constraint) e′ = x′

by differentiation of e = x − xset. Using this additional equation, the IP can be
solved for the unknowns. The additional equation leads to an overdetermined set
of equations for the IVP, for which special solvers can be used.

7.4 Pendulum example

The pendulum is a well known higher index system. A model of the pendulum of
fixed length L in Cartesian coordinates is:

const g: real = 9.8

proc Pendulum0(L: real) =

|[ x: real

, y: real := 0.0

, vx: real

, vy: real := 0.0

, T: real

| |T,x,vx|

, x’ = vx

, y’ = vy,

, vx’ = T*x

, vy’ = T*y - g

, x^2 + y^2 = L^2

]|

where g is the gravity constant and T is the tension in the pendulum bar. Al-
though there are 4 differential variables, there are only two dynamic degrees of
freedom. This is a result of the algebraic relation x2 + y2 = L2 between x and
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y. Differentiation of this equation leads to xx′ + yy′ = 0, which can be written as
xvx + yvy = 0. This is again a relation between differential variables that needs
to be differentiated to obtain the hidden constraints. In the model, x and vx are
chosen as dependent differential variables that are declared unknown in |T, x, vx|.
The other two differential variables y and vy can be freely initialized. They are
both initialized to 0 at their declaration. In order to make clear that the model is a
higher index system, the derivatives and algebraic variables x′, y′, v′x, v′y, T can be
assigned to the equations. This could, for example, lead to the model:

proc Pendulum1(L: real) =

|[ x: real

, y: real := 0.0

, vx: real

, vy: real := 0.0

, T: real

| |T,x,vx|

, |x’|, x’ = vx

, |y’|, y’ = vy,

, |vx’|, vx’ = T*x

, |vy’|, vy’ = T*y - g

, x^2 + y^2 = L^2

]|

Clearly other ‘assignments’ are also possible. Variable T could be assigned to
the third or fourth equation instead of v′x, or v′y, respectively. It is clear that
none of the derivatives or algebraic variables can be assigned to the last equation.
Therefore the model is of a higher index. The models Pendulum0 and Pendulum1

are semantically equivalent.
A simulator could use the Pantelides algorithm [Pantelides 1988] and symbolic

differentiation to derive the hidden constraints and calculate the consistent initial
conditions for the IP-unknowns x′, y′, v′x, v′y, T, x, vx.

8. CONCLUSIONS

The new language element for the declaration of unknowns is a versatile language
element. It makes it easy to specify instantaneous algebraic relations between
differential variables. Such relations may be the result of applying time scale or
parameter abstractions. Using unknown declarations, the modeler can model the
physical laws in their original form as equations, while the simulator can do the
solving. Unknown declarations can also be used to model steady state initialization.
The use of this single element instead of a number of special purpose language ele-
ments makes it easier to develop a simulator, and makes it easier to develop a formal
semantics for the purpose of verification. In addition, in the context of higher in-
dex systems, unknown declarations are useful for consistent initialization, to clarify
the structure of a system of equations, and to help the modeler detect structurally
singular systems of equations. Unknown declarations will be implemented in the
new release of the hybrid χ simulator.
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