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Abstract

The increasing complexity of hybrid models requires a mathematically sound language semantics that allows
reasoning about model behaviour and supports development of robust models. Model composition in hybrid
languages is realised by connecting continuous variables of sub-models. It is important to define the precise
semantics of connections. Improperly defined connection semantics can a) introduce undesirable non-
determinism and b) lead to undesirable semantics of conditional language constructs. In this article four
different connection semantics are examined. Three of them impose strong restrictions on the modelling style
or lead to less robust models. In the hybrid χ language the fourth possibility is chosen: a connection
represents an algebraic equation. In combination with the initial state calculation mechanism, and the use of
local variables, this results in robust and elegant composition semantics.

1. Introduction

Most hybrid languages support hierarchical models. Since many physical systems are composed of smaller
components, models become more clear if they reflect the structure of the modelled system. Hierarchical
modeling facilitates the process of model development in many ways. It supports both top-down and bottom-
up development. Components can be tested individually and their behaviour can be studied in different
environments, which promotes the development of libraries and standardization in different application areas
[1].
Model composition in hybrid languages is realized by connecting (among others) continuous variables of
sub-models. For this purpose, connection elements, so-called streams (gPROMS [2], ASCEND [3,4]),
terminals (Dymola [5,6], Omola [7]), or channels (χ [8,9]) are introduced in the interface specification of the
sub-models. The variables are connected by means of these elements. In most languages, a connection
imposes an equality constraint on the variables. However, this is not the only meaning that can be associated
with a connection. Depending on the physical quantity that the variables represent, continuous variables can
be divided into two classes: across variables, that become equal, and through variables, that sum to zero,
when connected [10]. In this article we concentrate on the semantics of connections that impose equality.
However, the requirements of a connection semantics equally hold for connections of through variables. The
only difference is that in that case, the connection equation is a summation to zero.
Specification of discontinuities in hybrid models is an important facility, provided by hybrid languages. One
way to express discontinuities is by changing the values of the continuous variables, including the connected
ones. Therefore, the language semantics has to define, what the values of the connected variables are after
such a change, and how equality is (re-)established. When equality is (re-)established, the value of the
variables of other sub-models may change as well. Particularly when sub-models are executed concurrently,
the way equality is ensured among connected variables can alter the behaviour of the entire model.
Therefore, it is essential to properly define the semantics of connections when one or both of the connected
variables are changed discontinuously. In Section 2, situations are examined where model behaviour depends
on the semantics of connections.
In Section 3, possible semantics of connections is treated. The different choices made by developers of
hybrid languages are compared, and major advantages and disadvantages are given. In Section 4, the
semantics of connections chosen in the χ language is discussed in more detail.

2. Discontinuous changes of connected variables

Hybrid languages provide discontinuity specification facilities in different forms. These facilities are used for
several purposes. A discontinuity in the model can be used to describe an instantaneous action, the time scale
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of which is much smaller than that of primary interest. Also, external actions that change the system state can
be described in this way. An example could be the interaction of the plant operator, who switches a valve on
or off. Discontinuities can also be used to model actions that are themselves of no interest; only the results of
these actions are important. A possible example is the process of filling a tank with reactants in preparation
for a batch process.
One way of introducing a discontinuity is to change the value of a continuous variable. It can be changed
explicitly by an assignment. Another, more subtle way to change a continuous variable is by altering the
equations or other variables, which determine its value. After such a change, the model has to be transformed
into a consistent state. A model is in a consistent state if a) the variables satisfy the equations and b) the
connected variables are equal. In Section 3 we show, that some connection semantics ensure that the second
requirement is automatically satisfied in any state of the system (e.g. shared variables). In other connection
semantics the second requirement is the special case of the first one (algebraic variables). When equality is
re-established among the connected variables, the variables of other sub-models may change as well, which
influences the behaviour of these sub-models. In Sections 2.1 and 2.2 we examine, how the behaviour of the
connected sub-models depends on the way equality is ensured among connected variables.

In the examples, the χ syntax is used. The elementary building blocks of a χ model are processes. Processes
are executed concurrently. A χ process consists of several optional sections, and is declared in the following
way:

proc name (parameter declarations)=
|[variable declarations ; initialization
|| links
| DAEs
| discrete-event statements
]|

The process interface declares parameters, including discrete and continuous channels. A continuous channel
is denoted by the ---° symbol. In the declaration section, the continuous variables are declared with the ::
symbol, whereas discrete variables are declared with the : symbol. In the declaration of continuous types and
continuous channels, the units of measurement are given between square brackets. The null dimension is
denoted by [-]. In the link section the continuous variables are linked to channels. For this, the ---° symbol is
used as well. Variables of different processes are connected if they are linked to the same channel. Equations
are given in a symbolic, analytical form, where ′x denotes the first time derivative of variable x . For
assignments to continuous and discrete variables the ::=  and the := symbols are used, respectively.

2.1 Scheduling dependency

s
P 2P 1

Figure 1. System of two processes.

This example illustrates how the value of a connected variable may depend on process scheduling. Consider
the system consisting of two processes depicted in Figure 1. The two processes P1  and P2  are connected by

channel s . This is specified in system S . Systems are used in χ to describe the fixed connection layout of
the contained processes and subsystems.

syst S = |[ s ::[ ]− | P s P s1 2( )|| ( )  ]|

The local variables s1  in process P1  and s2  in process P2  (see below) are connected to channel s  therefore,

they are equal. ProcessP1  determines the value of 1s . The value of s1  changes periodically with a period of 4



seconds. In the first 3 seconds of each period s1  is 0, and in the remaining 1 second it is 1. ProcessP1  is as
follows:

proc P s1( :: ---° [ ])− =
|[ s s1 1 0::[ ]; ::− =
|| s---° s1

| ′ =s1 0
| *[ ; :: ; ; :: ]∆ ∆3 1 1 01 1s s= =
]|

In the discrete-event part a repetition construct is used: statements that are enclosed between *[ and ]  are
repeated forever. The ∆ symbol denotes time passing. Processes executing a statement ∆c , where c  is a
numerical expression, remain blocked for c  seconds.
Every second process P2  stores the value of s2  in a list. Lists are declared in χ by appending the * symbol to
a type. The empty list is denoted by [], and ++ is the append operator.

proc P s2( :: ---° [ ])− =
|[ s xs2 ::[ ], : *− real
|| s---° s2

|| xs: [ ]=
; *[ ; :∆1 xs xs=  ++ ]][ 2s
]|

The value of s2  after 3 seconds, when P2  executes the statement xs xs:= ++[ ]s2 , is determined by the

connection semantics. If P1  is executed before P2 , s1  becomes 1. Depending on whether the value of s2  is

changed immediately or not, the value of s2  in the assignment of xs is 0  or 1 respectively. One might find

the desired output or even the correctness of this model questionable, since the value of s2  is stored exactly

at the time instant when s1  changes in P1 .  However, situations like this can not be prevented in complex
models. The reason for this is that it is very difficult to oversee whether events in different sub-models
happen at the same time. In fact, due to accumulating rounding errors even those events, which in principle
should happen at distinct but very close time instants, may happen at the same time.

2.2 Conditional language constructs

In hybrid languages conditional constructs are used for several purposes. In many hybrid systems the
describing set of equations depends on the state of the system. To model this, some form of a conditional
equation is used. Such an equation specifies different sets of equations to be active, depending on the state of
the system. In state-event specifications conditions are also used. The semantics of the connections affects
the semantics of other language constructs as well. Suppose, for example, that in process P2  the values of s2

are sorted into two lists, according to whether they are smaller or equal, or bigger than 0.5.

proc P s2( :: ---° [ ])− =
|[ s n xl xh2 ::[ ], :int , , :− real *
|| s---° s2

|
|

n xl xh: ; : [] ; : []= = =0
; *[ ;∆1 [ s2 05≤ . → n n xl xl: ; := + =1 ++ [ ]s2

[] s2 0 5> . → n n xh xh: ; := + =1 ++ [ ]s2

]
  ]

]|



For selection, the guarded command of the form [ b S1 1→ [] b S2 2→ [] … [] b Sn n→ ]  is used. The boolean

expression b i ni ( )1≤ ≤  denotes a guard, which is open if the expression evaluates to true, and is otherwise
closed. After evaluation of all the guards, one of the alternatives with an open guard is chosen for execution.
In this example, a choice is made based on the value of s2 , therefore, execution of P2  depends on the

connection semantics. If after 3 seconds P1  is scheduled first, and the assignment to s1  results in the

immediate change of s2 , then the second alternative (s2 05> . )  is chosen, otherwise the first one.

Furthermore, if the concurrent assignment of s1  ( :: )s1 1=  in P1  changes the value of s2  between the

evaluation of the guards and the append action, then the first alternative (s2 05≤ . ) is chosen in P2 , yet the

value 1 is appended to list xl . Obviously, this would not be the desired behaviour of P2 .  Normally, list xl
should only contain values smaller or equal than 0.5, while values bigger than 0.5 should be stored in xh .

The example illustrates that when conditional language constructs use a connected continuous variable two
problems may arise depending on the connection semantics. One problem is that the choice may depend on
process scheduling. For the purpose of modelling industrial systems it is desirable that operations on a
connected variable do not result in non-deterministic behaviour. The second problem is that after an
alternative with a true condition is selected, the condition might immediately become false. This means that
the condition can not be used as post-condition, when reasoning about the model behaviour.

3. Semantics of connections

In this section different connection semantics are surveyed. The purpose of this survey is to present different
possibilities and to examine how different semantics determine, and in most cases restrict, the modelling
style. Wherever possible, we mention some simulation languages that employ the given approach. However,
it is not our aim to detail the consequences of choosing certain semantics in a given language. In order to do
this, a language considered would need to be studied in full detail, and special language characteristics would
need to be revealed. In many cases, however, there is not enough documentation available.
From the available documentation it appears that often the nature of the language guarantees that situations
shown in the previous section do not occur. Furthermore, the way certain language constructs can be used
and combined may be restricted in order to decrease the chance for erroneous or ambiguous models. In
gPROMS, for example, two sub-models cannot manipulate the same connection equation simultaneously.

3.1 Shared variables

Connected variables become a single entity shared by the sub-models. It implies that changes to a variable in
one sub-model are immediately visible in the other sub-model. This approach is implemented in ASCEND, if
streams are connected with the aid of the ARE_THE_SAME operator. Streams can be merged in gPROMS
as well, if the model’s interface with its environment corresponds exactly to the interface of its sub-model.
The disadvantage of this approach is that in parallel languages the simulation result may depend on the actual
process scheduling. Furthermore, as the second example of the previous section illustrates, the semantics of
the conditional language constructs may be affected as well. Solutions used in parallel programming
languages to control access to shared variables (semaphores, access protocols) would eliminate the simplicity
gained by merging the variables, and probably would be an unacceptable burden in most models of industrial
systems.
 
3.2 Causal connections

Connections define a causal interaction between the subsystems, where in each connection one side acts as
input and the other side as output. One problem with this approach is that the direction of the information
flow is fixed for each component. It restricts re-use of a component in other environments. Another
restriction is that the connections should not lead to algebraic loops. In order to satisfy this requirement, the
model may need to be transformed.
General purpose simulation packages like ACSL [11] and SIMULINK [12] use this approach. These



languages require the Differential Algebraic Equations (DAEs) of each subsystem to be written in explicit
state-space form � ( )x f x, u= , y g x, u= ( ) , where u is used as input and y  as output. Transformation into
explicit state-space form (if possible) requires extra engineering skills and the resulting equations often do
not reflect the natural system structure. With the advent of DAE solvers that can solve the implicit state
space form f x, x, 0( � )t = , hybrid languages do not need to employ causal relations any more [13,14].

3.3 Master object

From the model’s topology, first the sets of connected variables that are equal, are identified. For each set, a
master object is introduced, which holds the value of the connection. This value is distributed among the
variables at the end of each continuous phase. During the discrete-event phase, the sub-models have access
to their (local) variables only. Changes of these variables may lead to a temporal inconsistency in the system.
The system is brought back to consistency, by updating the master object, and distributing its new value
among the variables. This idea is inspired by distributed systems, where several processes share a common
memory. In order to allow concurrent accesses to the same data, duplicate copies are made of the shared
block (i.e., block replication). For data coherence control, one copy is designated as a master copy, the value
of which is distributed among the other copies.
The difficulty in hybrid systems is to find a suitable protocol that determines the value of the master object.
The mechanism has to be simple and intuitive, such that developers of complex models can oversee the
system behaviour. Also, the protocol may have to comply with the way non-connected variables are
assigned. See the difference between assignments to differential and algebraic variables in Section 4. A
possible choice could be to assign the master object each time one of the connected variables is assigned. In
this way, the master object always holds the last change that has been made to the connection.  Its value
could be distributed only at the end of the discrete event. However, the value of the master object would
depend on the process scheduling.
Another difficulty with using a master object is that it can hardly be generalized for connection of through
variables.
 
3.4 Algebraic equations

Connections define an additional algebraic equation between the connected variables. This is the case in
gPROMS, Dymola and in χ. However, the question remains what the semantics is of such an equation, i.e.,
when is it valid and how is equality ensured after a discontinuous change to one or both of the connected
variables. Also, it is not always clear whether the semantics of such an equation is the same as that of other
equations. Furthermore, if such an equation is replaced at a lower level by one shared entity due to
optimization, the first alternative, (a shared variable) is implemented. Such a replacement is only allowed if
the semantics of a connection equation between two variables is identical to that of referencing a single
shared entity by both variables.

4. Semantics of model composition in the χ language

The χ language is a concurrent language. In order to avoid the disadvantages of using shared variables or a
master object in parallel languages, algebraic equations have been chosen as the semantics of connections. In
the sequel, the precise meaning of such a connection and the consequences of this semantics are explained.
The χ language is a hybrid specification language, that has been designed to be suitable for modelling
discrete-event, continuous-time and hybrid systems. Simulation of a hybrid χ model can be described as a
sequence of continuous phases alternated with discrete phases at certain time points. The continuous-time
behaviour is given in the form of DAEs, while discrete actions are specified in a CSP-like [15] concurrent
programming language. Variables representing the system dynamics are continuous variables; those that
occur with primes in the DAEs are differential variables, whereas other continuous variables are algebraic.
The values of continuous variables are calculated from the DAEs; assignments determine their value only for
the current time point. The values of discrete variables are determined by assignments. They hold their value
between two subsequent assignments. In a χ model all variables are local to their processes. This complies
with the language philosophy: data exchange among processes in discrete sub-phases takes place only by



communication through discrete-channels. Furthermore, using only local variables turns out to be essential
for a simple and robust connection semantics.

4.1 Connections

A connection between two continuous variables of different χ processes implies an additional algebraic
equation. To keep the language small and robust, the semantics of a connection equation has been chosen to
be identical to that of any other equations defined in the processes. The semantics is as follows. Equations
are valid from the beginning until the end of a continuous-phase. The discrete-phases are divided into sub-
phases. Each sub-phase ends when the discrete bodies of all the processes are blocked, waiting for events to
happen. During discrete sub-phases the equation consistency may temporarily be lost due to discontinuous
changes of continuous variables, or due to assignments to discrete variables appearing in the equations. At
the end of each sub-phase a new consistent initial state is calculated, so that equality between connected
variables is re-established.

4.2 Initial state calculation

The initial state is calculated by solving the system for the algebraic variables and the time derivatives of the
differential variables. The differential variables are taken as known. Steady state calculation is requested, if
time derivatives of the differential variables are assigned. In this special case, the value of the differential
variable, the derivative of which is assigned, is calculated and its time derivative is taken as known. The
language syntax supports new state calculation by allowing a special assignment symbol ::= to be used only
for assignments to differential variables (e.g. v::= 0) and, in case of steady-state calculation, for

assignments to time derivatives of differential variables (e.g. ′ =v :: 1). Algebraic variables can only be given

an “initial guess”. For this purpose, the :~  symbol is used as in B :∼ ��� It is necessary to give algebraic
variables an initial guess if more solutions are possible, or if the initial state solver requires a good starting
value. The initial guess is used only to ensure that the solver converges to the required solution. Consider for
example the equations describing a resistor and a capacitor connected in series with a voltage source.

u R i

C u i

u u u
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R C
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⋅ ′ =

= +0

The only differential variable is uC , therefore its value can be freely chosen, e.g. uC ::=10. Algebraic

variables (uR , i ) can take an initial guess, for example, u iR :~ , :~ .5 05. As a result, the values of uR  and

i  change temporarily. However, when a consistent state is calculated, their values are determined by the
equations.

4.3 Consequences

An advantage of treating connection equations in the same way as other equations becomes apparent in the
situation where a differential variable is connected to an algebraic one. The value of the differential variable
can only be changed by an assignment in the process where it appears differentiated in the equations.
Consider, for example, the system of a mass m, connected by a linear spring with stiffness k  as shown in
Figure 2.
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                        Figure 2. Mass-Spring system.                       Figure 3. Mass-Spring model.

The χ model which describes this system consists of two processes: M  and S , representing the mass and
the spring. The processes are connected by channels F  and x , which represent the force applied by the
spring and the position of the mass, respectively. In process M  the Newtonian equations describe the
movements of the mass.

proc M F( :: ---° [ ], ::N x ---° [ ], : ) m realm =
|[ F N x m v m s x1 1 1 03::[ ], ::[ ], ::[ / ]; :: .=
||| F ---° F x1, ---° x1

|| F m v1 = ⋅ ′
, v x= ′1
]|

proc S F( ::---° [ ], ::N x ---° [ ], : ) m realk =
|[ F N x m2 2::[ ], ::[ ]
|| F ---° F x2, ---° x2

|| F k x2 2= ⋅
]|

syst MS =
|[ F N x m::[ ], ::[ ]
| M F x S F x( , , . ) || ( , , . )01 0 05
]|

In this model x1 is a differential variable that is connected to an algebraic variable: 2x . This means that the

connection equation 21 xx =  is added to the set of active equations. The value of 1x  can only be changed in

process M , for example, by means of an assignment. Since 2x  is algebraic variable, it can only be given an

initial guess. However, this does not have any effect on the value of 1x  because, when the initial state is

calculated, 1x  is constant and 2x  is determined by the connection equation. Allowing only one process to
change a differential variable discontinuously promotes more disciplined modelling.
Other situations, where the value of the connection should be changed in both processes are less common.
When two algebraic variables are connected, like in the above example 1F  and 2F , the values of both of
them are calculated from the equations. Therefore, it is unlikely that their value should be changed explicitly.
The language reflects this: both can only be given an initial guess. Finally, when two differential variables
are connected, one becomes dependent. This is the case, for example in multibody systems, where rigid
bodies are connected to each other by joints that restrict the relative motion between pairs of bodies. The
variables that represent the position of the bodies are differential, since they appear differentiated in the
equations that describe the system motion. However, the position of a connected body can not be freely
chosen; it is (partially) determined by the position of the body, to which it is connected. In general,
connection of differential variables means, that one reduces the degree of freedom of choosing the values of
differential variables. Furthermore, the index of the DAEs is increased, which leads to numerical difficulties.
Another advantage of the connection semantics chosen in the χ language is that discontinuous changes to
connected variables do not alter the behaviour of connected processes within a discrete sub-phase. This is



because all variables are local to the processes and equality is established only at the end of the sub-phase.
This means that process behaviour in a discrete sub-phase can be fully analyzed based on the values of local
variables, independently of whether a variable is connected or not.

5. Conclusions

The possibility of discontinuous changes of connected variables requires the semantics of connections to be
properly defined. Improperly defined connection semantics can a) introduce undesirable non-determinism
and b) lead to undesirable semantics of conditional language constructs.
The semantics of model composition can be defined in several ways. However, use of shared variables may
lead to less robust models, whereas use of causal connections imposes restrictions on the modelling style.
By choosing the semantics of connections to be identical to that of other equations, the hybrid χ language is
kept small and robust. In combination with keeping all variables local, this results in simple and elegant
model composition semantics. Other beneficial consequences of this combination are that a) a differential
variable can be changed in one process only and b) model behaviour in a discrete-event depends on the
values of local variables only.
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