

Supervisory control synthesis for a patient support table

Rolf Theunissen, Ramon Schiffelers, Bert van Beek, Koos Rooda

Systems Engineering Group
Dept. of Mechanical Engineering

December 4, 2008

Background

The work presented is carried out in the Darwin project:

Objective

Develop architectures, methods and tools for optimizing system evolvability. i.e. the ability of a system to evolve easily in the face of changing requirements.

Industrial case

MRI scanners: complex systems, about 10⁷ lines of code

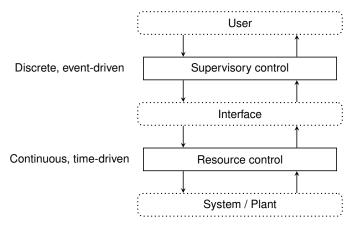
► Organization

- Academic partners Delft University of Technology, Eindhoven University of Technology, University of Groningen (RuG), University of Twente, and the Vrije Universiteit Amsterdam
- ► Industrial partners Philips Healthcare, Philips Research
- Project Management Embedded Systems Institute (ESI)

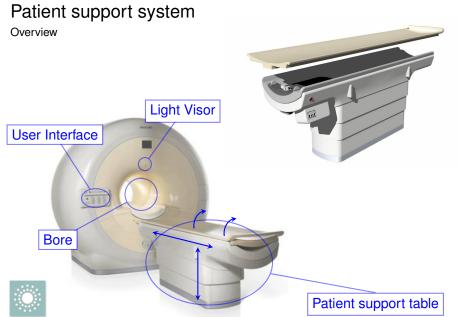
See http://www.esi.nl/projects/darwin

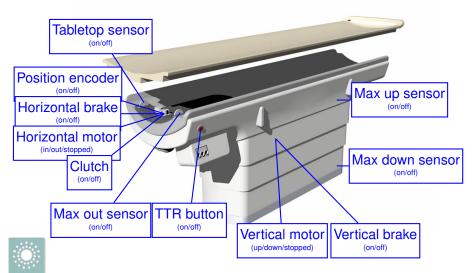
Outline

- Supervisory control
- Patient support system
- Supervisory control design
 - Conventional
 - Model-based Engineering
 - Synthesis
- Concluding remarks

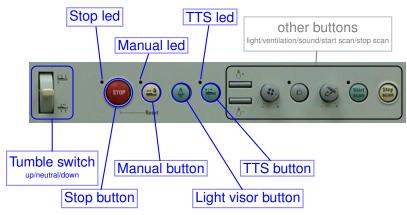


Supervisory control

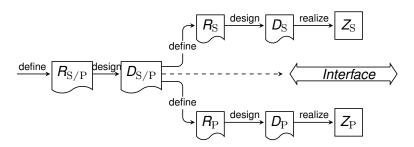




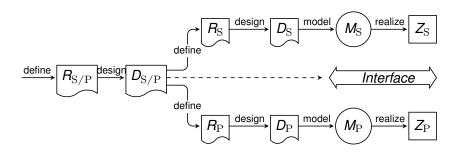
Patient table



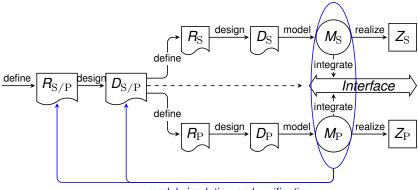
PICU (user interface)



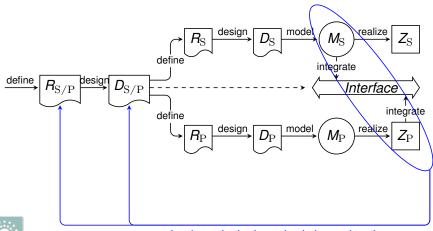
Conventional design



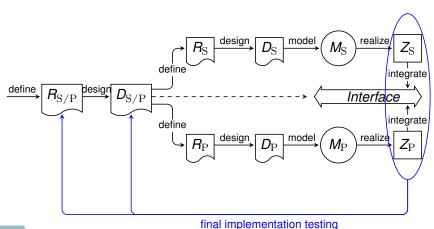
Model-based Engineering



Model-based Engineering



Model-based Engineering


hardware-in-the-loop simulation and testing

Model-based Engineering

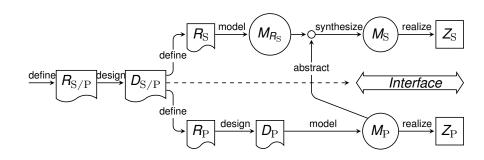
Supervisory Control Synthesis

The resulting supervisor is:

- ightharpoonup by construction mathematically correct w.r.t. $M_{R_{
 m S}}$
- controllable
- non-blocking (deadlock and livelock free)
- maximally permissive allowing selection of 'optimal' sequence of events

Approach:

- ▶ Model (uncontrolled) system \implies M_P (hybrid model)
- ▶ Abstract from M_P (hybrid model) $\implies M_P$ (discrete-event model)
- ▶ Model control requirements $R_{\rm S}$ that determine when events may happen $\implies M_{R_{\rm S}}$ (formal requirements)
- •


Synthesize the supervisor \implies $M_{
m S}$ (discrete-event model)

Model-based Engineering and Supervisory Control Synthesis

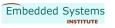
Supervisory control synthesis and evolvability

Advantages of the method

In case of changes in the required (control) functionality $R_{\rm S}$ only:

- ▶ the control requirements M_{R_S} have to be updated
- ► the uncontrolled system *M*_P might change (new sensors/actuators)

the supervisor and its implementation are regenerated.


Supervisory control synthesis and evolvability

Model requirements

The system and requirements are decomposed into *small*, *loosely* coupled and *minimally restrictive* models:

- ▶ Small:
 - easier to understand
 - easier to modify
- Loosely coupled:
 - no entangling of requirements
 - independent modifications
- ► Minimally restrictive:
 - maximal freedom for future modifications/extensions

Uncontrolled system M_P

Uncontrolled system M_P consists of 17 small automata describing:

- Horizontal axis
- Vertical axis
- ▶ User interface buttons

In total 1296 states and 27360 transitions for the uncontrolled system.

Control requirements $M_{R_{c}}$

- \blacktriangleright The model of the control requirements M_{R_s} consists of 16 small automata
- Examples of requirements:
 - Do not move beyond end sensors
 - Only motorized movement if clutch is active
 - No motorized movement if Table-Top-Release active
 - Only move vertically if horizontally in maximal out position
 - Tumble switch moves table up and down, or in and out

▶ ...

December 4, 2008 15/19

Supervisor synthesis

Synthesis:

- ► The model of the supervisor M_S consists of 2816 states and 21672 transitions
- Supervisor synthesis takes a minute on a desktop pc

Implementation:

- ► The synthesized supervisor has been simulated in parallel with the (hybrid) model of the system
- ► The synthesized supervisor has been simulated in real-time with the actual patient support system (hardware-in-the-loop simulation)

Concluding remarks

- Eliminated manual design of the supervisor
- Unambiguous specifications of the uncontrolled system and the control requirements
- Supports evolvability
- ightharpoonup Implemented supervisor $Z_{
 m S}$ on the real hardware
- Different theories available for supervisory control synthesis:
 - monolithic / modular / decentralized / hierarchical / interface-based supervisors
 - supervision under partial observation
 - event-based / state-based supervision

Concluding remarks

Q-T-C triangle

► Quality: Q↑ The synthesized supervisor is by construction mathematically correct w.r.t. the modeled requirements

► Time-to-market: T ↓ A change in required functionality leads to re-modeling of the requirements only

► Costs: C ≈

The costs remain more or less the same

Supervisory control synthesis for a patient support table

Rolf Theunissen, Ramon Schiffelers, Bert van Beek, Koos Rooda

> Systems Engineering Group Dept. of Mechanical Engineering

December 4, 2008

