Engineering based on mathematical models

Ramon Schiffelers

joint work with

Rolf Theunissen, Bert van Beek, Asia van de Mortel-Fronczak, Koos Rooda

> Systems Engineering Group Dept. of Mechanical Engineering Eindhoven, University of Technology

The work presented is carried out in the Darwin project

- Objective Develop architectures, methods and tools for optimizing system evolvability. i.e. the ability of a system to evolve easily in the face of changing requirements.
- Industrial case
 MRI scanners: complex systems, about 10⁷ lines of code
- Organization
 - Academic partners Delft University of Technology, Eindhoven University of Technology, University of Groningen (RuG), University of Twente, and the Vrije Universiteit Amsterdam
 - Industrial partners Philips Healthcare, Philips Research
 - Project Management Embedded Systems Institute (ESI)

See http://www.esi.nl/projects/darwin

Outline

- Supervisory control
- Model-based Engineering (MBE)
- Supervisory Control Synthesis (SCS)
- Supervisory control design
 - conventional
 - using MBE
 - using MBE and SCS
- Industrial case study: Patient support system of a MRI scanner
- Concluding remarks

Framework

Figure inspired by the TANGRAM project

Model-based engineering

Simulation and verification

Model-based engineering

Early integration

hardware-in-the-loop simulation and testing

Model-based engineering

Final implementation testing

final implementation testing

Systems view

A system can be divided in

- (uncontrolled) Plant P
- Supervisor (controller) S

Supervisor S ensures that plant P satisfies its control requirements R_S .

Conventional design

The resulting supervisor is

- by construction mathematically correct w.r.t. M_{R_S}
- non-blocking (deadlock and livelock free)
- maximally permissive allowing selection of 'optimal' sequence of events

Approach:

- ▶ Model (uncontrolled) plant \implies M_P (hybrid model)
- ▶ Abstract from M_P (hybrid model) $\implies M_P$ (discrete-event model)
- Model control requirements R_S that determine when events may happen $\implies M_{R_S}$ (formal requirements)

Model-based Engineering and Supervisory Control Synthesis

Table

PICU (user interface)

Uncontrolled plant M_P

Uncontrolled plant M_P consists of 17 small automata describing:

- Horizontal axis
- Vertical axis
- User interface buttons

In total 1296 states and 27360 transitions for the uncontrolled plant.

Control requirements M_{R_s}

- ► The model of the control requirements M_{R_S} consists of 16 small automata
- Examples of requirements:
 - · Do not move beyond end sensors
 - Only motorized movement if clutch is active
 - No motorized movement if Table-Top-Release active
 - Only move vertically if horizontally in maximal out position
 - Tumble switch moves table up and down, or in and out
 - . . .

Supervisor synthesis

- ► The model of the supervisor M_S consists of 2816 states and 21672 transitions
- Supervisor synthesis takes a minute on a desktop pc

- The synthesized supervisor has been simulated in parallel with the (hybrid) model of the plant
- The synthesized supervisor has been simulated in real-time with the actual patient support system (hardware-in-the-loop simulation)

- Eliminated manual design of the supervisor
- Combination of MBE and SCS works very well, also on a complex industral case
- Lots of theory available for supervisory control synthesis
 - monolitic / modular / decentralized / hierarchical / interface-based supervisors
 - supervision under partial observation
 - event-based / state-based supervision
 - different formalisms for plant modeling and requirement specifications

Q-T-C triangle

- ► Quality: Q ↑ The synthesized supervisor is by construction mathematically correct w.r.t. the modeled requirements
- ► Time-to-market: T ↓ A change in required functionality leads to re-modeling of the requirements only
- ► Costs: C ≈
 The costs remain more or less the same

Engineering based on mathematical models

Ramon Schiffelers

joint work with

Rolf Theunissen, Bert van Beek, Asia van de Mortel-Fronczak, Koos Rooda

> Systems Engineering Group Dept. of Mechanical Engineering Eindhoven, University of Technology

> > Oktober 9, 2008